
1

DEFIRANGER: Detecting DeFi Price Manipulation
Attacks

Siwei Wu, Zhou Yu, Dabao Wang, Yajin Zhou, Lei Wu, Haoyu Wang, Xingliang Yuan

Abstract—The rapid growth of Decentralized Finance (DeFi)
boosts the blockchain ecosystem. At the same time, attacks
on DeFi applications (apps) are increasing. However, to the
best of our knowledge, existing smart contract vulnerability
detection tools cannot directly detect DeFi attacks. That’s because
they lack the capability to recover and understand high-level
DeFi semantics, e.g., a user trades a token pair X and Y in a
Decentralized EXchange (DEX).

In this work, we focus on the detection of two new types of
price manipulation attacks. To this end, we propose a platform-
independent method to identify high-level DeFi semantics. Specif-
ically, we first construct the Cash Flow Tree (CFT) from a
raw transaction and then lifting the low-level semantics to high-
level ones, including five advanced DeFi actions. Finally, we use
patterns expressed with the recovered DeFi semantics to detect
price manipulation attacks.

We implemented a prototype named DEFIRANGER that de-
tected 14 zero-day security incidents. These findings were reported
to affected parties or/and the community for the first time.
Furthermore, the backtest experiment discovered 15 unknown
historical security incidents. We further performed an attack
analysis to shed light on the root causes of vulnerabilities
incurring price manipulation attacks.

Index Terms—Blockchain transaction analysis, DeFi security,
attack detection

I. INTRODUCTION

The recent Decentralized Finance (DeFi) boom brings
Ethereum a new climax, attracting 48.65 billions USD locked
in DeFi apps up to 29th April 2023. Security issues are
also emerging with the rapid growth of the DeFi ecosystem.
DeFi-related security issues have been reported, including
front-running [1], [2], [3], Pump-and-Dump (P&D) scams [4],
[5], and flash loan attacks [6]. In addition, code and logic
vulnerabilities in DeFi apps bring many security incidents [7],
[8], [9], [10], [11], [12], [13], [14], [15].

Most existing detection tools [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28] mainly focus
on the code vulnerability, such as the re-entrancy and the
integer overflow. However, to the best of our knowledge, they

Siwei Wu, Yajin Zhou, and Lei Wu are with the College of Computer
Science and Technology, Zhejiang University, Hangzhou, Zhejiang, CN. E-
mail: wusw1020@zju.edu.cn, yajin zhou@zju.edu.cn, lei wu@zju.edu.cn.

Zhou Yu is with School of Computer Science, Beijing Univer-
sity of Posts and Telecommunications, Beijing, Beijing, CN. E-mail:
yu zhou@bupt.edu.cn.

Daobao Wang and Xingliang Yuan are with Faculty of Infor-
mation Technology, Monash University, Clayton, VIC, AU. E-mail:
dabao.wang@monash.edu, xingliang.yuan@monash.edu.

Haoyu Wang is with School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan, Hubei , CN. E-mail:
haoyuwang@hust.edu.cn.

Yajin Zhou is the corresponding author.

cannot be directly used to detect DeFi attacks caused by logic
vulnerabilities due to the lack of the capability to recover and
understand high-level DeFi semantics, e.g., a user trades a
token pair X and Y in a Decentralized EXchange (DEX).

Among DeFi apps, decentralized exchanges and lending
apps are the two most popular types. Each pool in the DEX
maintains two or more kinds of cryptocurrencies and leverages
an automatic price mechanism to decide the exchange rate.
Besides, a user can borrow cryptocurrencies from a lending
app by depositing the collateral (e.g., the wrapped native
tokens, stablecoins, or other tokens) into the app. To determine
how many cryptocurrencies a user can borrow, the lending app
needs to evaluate the value of the collateral, e.g., by retrieving
the current price from a DEX pool.

With the popularity of DEX and lending apps, some novel
attacks involving price manipulation are emerging. Specifi-
cally, two types of price manipulation attacks are concerned
in this paper (see the definitions in Section III). The first
indicates that an attacker forces a vulnerable DeFi app to
perform an unwanted trade inside a DEX pool by exploiting
the vulnerability of the DeFi app. Then the attacker can profit
from the token price manipulated by the unwanted trade. The
second one entails that an attacker manipulates the token price
calculated by a vulnerable DeFi app (e.g., a lending app),
whose price mechanism depends on the real-time status, e.g.,
the quotation and reserves of a token in a DEX pool. The
attacker can manipulate the status by trading in the DEX pool.
For instance, the attacker can raise the collateral price in a
DEX pool that provides the price quotation to the lending
app. By doing so, the attacker can borrow more tokens than a
benign borrower with the same amount of collateral.

Our work Our work aims to detect price manipulation
attacks, requiring the analysis of invocations between multiple
smart contracts and understanding of high-level semantics
in DeFi apps. However, there is a semantic gap between
raw transactions that can be observed on blockchains and
high-level DeFi semantics of DeFi apps. Namely, we can
only observe the primitive information of raw transactions
but cannot get the high-level DeFi semantics such as there
exists an account that trades X USDC for Y Ether in the
USDC-Ether pool using the Uniswap V2 protocol. Since price
manipulation attacks usually involve the trade of tokens, the
high-level DeFi semantics are critical to detect such attacks.

To fill out the semantic gap, we propose a platform-
independent way to recover DeFi semantics 1. Specifically, we
first define semantics for three basic DeFi actions (e.g., token

1We exchangeably use DeFi semantics and actions in this paper.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

2

transfer) and five advanced DeFi actions (e.g., performing a
trade in a DEX pool) in Section IV. The basic semantics
can be identified from the raw transactions, and all advanced
semantics consists of basic semantics. Our fundamental idea
is to automatically infer advanced actions from basic actions.

When implementing the idea, we encounter three chal-
lenges, e.g., numerous basic actions, internal token ledgers,
and inter-contract token transfers. To address these challenges,
we first collect a raw transaction and then construct the Cash
Flow Tree (CFT). This tree consists of contract invocations,
events, and basic actions involved in the transaction. Then, we
lift the tree’s DeFi semantics from basic actions into advanced
actions. During the semantics lifting, we apply three opera-
tions, e.g., connection, insertion, and combination. Finally, we
utilize patterns predefined with recovered DeFi semantics to
detect if the raw transaction is a price manipulation attack.

Evaluation We have implemented a prototype system called
DEFIRANGER and evaluated its effectiveness from two per-
spectives. First, whether the proposed method can accurately
recover DeFi semantics? Second, can our system detect real-
world price manipulation attacks in the wild, including zero-
day ones?

To the best of our knowledge, there is no existing ground
truth for advanced DeFi semantics. Therefore, we manually
build a dataset containing 8, 117 advanced actions involved
in 15, 272 raw transactions to answer the first question. After
that, we compare the result of recovered DeFi semantics with
the dataset. The comparison shows that DEFIRANGER can
accurately recover DeFi semantics in high precision (0.996)
and true positives rate (0.962).

Our system was deployed in reality with the industry partner
(BlockSec [29]) from mid-2020 to the writing of this paper in
29th April 2023. It successfully detected 14 zero-day incidents
involving price manipulation attacks. For the detected zero-day
security incidents, we were the first to detect each of them
and report them to the affected project party or the com-
munity. To evaluate DEFIRANGER’s precision of detecting
known attacks, we performed a backtest for 92, 325, 423 raw
transactions. As a result, it detected 129 price manipulation
attacks with a precision of 0.831. Note that, in the experiment,
DEFIRANGER not only detected 26 known security incidents
but also discovered 15 unknown security incidents that have
not been reported or mentioned online. This result shows
that DEFIRANGER can effectively detect price manipulation
attacks.

We further analyzed the 41 incidents to shed light on the
root causes of vulnerabilities (Section VIII). Our analysis
result shows that the root causes come from four perspectives,
i.e., access control, design compatibility, slippage check, and
price dependency. These insights can help the community to
propose better solutions to secure the DeFi ecosystem.

Contributions Our work makes the following main contri-
butions.
• We define two types of price manipulation attacks and then

propose a methodology to detect them.
• We propose a general way to recover DeFi semantics. To

the best of our knowledge, our work is the first to provide a

A raw (EVM) transaction

Externally
Owned Account

(EOA)

Smart Contract
Account

Launches an
external transaction

Smart Contract
Account

Launches an
internal transaction

Fig. 1: A raw transaction that consists of an external transac-
tion and an internal transaction.

systematic definition for DeFi semantics and automatically
recover DeFi semantics.

• We implement a prototype named DEFIRANGER. The real
deployment of the system detected 14 zero-day security
incidents. Furthermore, in the experiment, it discovered 15
unknown historical security incidents.

• We performed a detailed analysis of 41 security incidents
to shed light on the root causes of vulnerabilities.

II. BACKGROUND

This section presents necessary background information to
better understand our work.

A. Ethereum Accounts and Transactions

Ethereum has two types of accounts, i.e., the externally
owned account (EOA) and the smart contract account. A
transaction can be used to send Ether between accounts or
to invoke APIs in smart contracts. There are two types of
transactions, i.e., the external and internal transactions. An
EOA triggers the external transaction, while a smart contract
triggers the internal transaction. In this paper, the usage of
raw transaction or EVM transaction implies all the external
and internal transactions initiated from an external transaction
(as shown in Fig. 1.)

B. Cryptocurrencies

There are two main types of cryptocurrencies, native token
and ERC20 token 2. Native tokens, such as Ether in Ethereum
and BNB in BSC, are supported inherently by blockchains,
while an ERC20 token is the third-party one issued using
smart contracts. Every account, including EOA and the smart
contract accounts, can own native and ERC20 tokens. Though
there are many types of ERC20 tokens, the following two are
related to our work.
Stablecoins Stablecoins are a class of cryptocurrencies that
guarantee their price stability. Typically, stablecoins are either
directly/indirectly backed or intervened through different stabi-
lization mechanisms [30], [1]. The popular stablecoins include
USDC [31], USDT [32], and so on.
Liquidity Provider (LP) Tokens A DeFi app may issue
LP tokens to users who provide liquidity (i.e., depositing
cryptocurrencies into that DeFi app). Liquidity providers can
use the LP tokens as certificates to withdraw their deposits
or exchange for other cryptocurrencies in those decentralized
exchanges (Section II-C). In this paper, we interchangeably
use cryptocurrencies and tokens to denote native tokens and
ERC20 tokens.

2Our paper does not deal with NFT tokens.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

3

C. Decentralized Finance (DeFi)

DeFi app usually consists of multiple smart contracts to
implement its functionality, running on the blockchain. Some
financial services, such as lending, exchange, and portfolio
management, have emigrated into the DeFi ecosystem.

Decentralized EXchange (DEX) DEX is an exchange
where users can trade different tokens in a decentralized way.
There are two types of DEX, including List of Booking
(LOB) and Automated Market Maker (AMM). DEX using
the LOB mechanism maintains an off-chain order book to
record users’ bids and asks. Namely, matching orders will
be completed off-chain. Alternatively, the AMM mode works
in a fully decentralized way. The market makers put two
or more tokens into a DEX pool. The trade rate between
cryptocurrencies in the pool will be calculated automatically
based on a mathematical formula. In this paper, if not other
specified, we only discuss DEXs using AMM.

Lending To borrow a type of cryptocurrency, borrowers
are required to over-collateralize other cryptocurrencies for
covering the loan due to the pseudo-anonymity of Ethereum.
For example, in MakerDAO [33], borrowing 100 DAI requires
a collateral of Ether that worth 150 DAI. Moreover, once the
collateral’s value falls below a fixed threshold (due to the
price drop of the collateral), it will trigger the liquidation (the
lending app will sell the collateral), as well as a designed
penalty that will be applied to borrowers.

Flash Loan Some DeFi apps [34], [35], [36] provide a type
of non-collateral loan called flash loan. A valid flash loan
”generously” lends users a considerable amount of capital
without any collateral. The security of the loan is guaranteed
since the user needs to borrow and return the loan in a single
transaction (with multiple following internal transactions).
Otherwise, the lending transaction will be reverted by the
loan provider. The flash loan gives everyone the ability to
temporarily own a large number of tokens. However, it can
also be abused to launch attacks, and a number of such attacks
have been observed in the wild [6].

Yield Farming As more and more DeFi apps motivate
clients to provide liquidity. Another kind of apps, known as
yield farming apps, debut to help users (liquidity providers) to
invest their cryptocurrencies. In particular, they automatically
find the apps that provide the highest Annual Percentage
Yields (APY) and then invest clients’ deposited tokens into
these apps.

III. PRICE MANIPULATION ATTACKS

A DEX contract leverages an automatic mechanism to price
tokens. However, attackers can manipulate the price inside a
DEX, especially by abusing flash loans, to gain profits. Such
attacks are called price manipulation attacks. In the following,
we first use a simple price mechanism as an example to
introduce the concept of price manipulation and then elaborate
on two types of widespread price manipulation attacks, which
apply traditional financial manipulation methods, i.e, front
running [37] and cross-market manipulation [38], to DeFi
ecosystem.

A. Price Manipulation

Most of the AMM DEXes use the constant product formula
or its variants to price tokens. Specifically, each DEX contract
(or pool) maintains the liquidity of two or more tokens and
uses their liquidity (or reserves) to price tokens.

For simplicity, we take a constant formula pricing two
tokens (X and Y) as an example: xy = c. Specifically, x
and y are the liquidity (or reserves) of token X and Y in the
pool, respectively, and c is a constant. Based on the formula,
we can use one token to price another token. As shown in
∆y = ∆x∗y

∆x+x , ∆y shows the amount of token Y that a user can
trade with token X in an amount of ∆x.

Since the exchange rate between the token pair depends
on the pool’s reserves, attackers who are capable of draining
the pool can make a trade to inflate or reduce a token’s
price, namely, manipulate the price deviating a lot away
from the market price. Such behavior is referred to as price
manipulation. DeFi contracts that interact with a manipulated
pool may suffer from financial losses.

B. Type I Price Manipulation Attack

If a DeFi contract’s public interfaces that interact with DEX
pools are not properly protected, then an attacker can leverage
the method of front running [37] to attack the contract. In
general, the type I price manipulation attack consists of three
steps.
1) Front run (or hoard): The attacker uses a huge amount of

token X to buy token Y in a DEX pool, thereby greatly
inflating the price of token Y. Also, the attacker hoards lots
of the token Y.

2) Forced buy: Since the victim contract’s interface to buy
token Y is not properly protected, the attacker can force the
contract to buy token Y by directly invoking the interface,
even if the purchase price is much higher than expected.
This step further increases the price of token Y in the pool.

3) Back run (or dump): Due to the increased price, the attacker
profits from dumping token Y, and all the profits come out
of the victim contract.

Differences with the Sandwich Attack Superficially, the
type I price manipulation attack is very similar to the well-
known sandwich attack [3]. However, there are two main
differences. First, the type I price manipulation attack involves
vulnerabilities in smart contracts, while the sandwich attack
does not. Second, the whole process of type I attack often
happens in a single EVM transaction, while a sandwich attack
involves at least three EVM transactions.

C. Type II Price Manipulation Attack

The business logic of some DeFi apps needs to calculate
the token’s value. For instance, a lending app is required to
calculate the collateral’s value to decide how many tokens a
borrower is eligible to borrow. A token’s (spot) price in the
DEX pool can be directly used as the price oracle. However,
the token price depends on the DEX pools’ reserves. Thus,
an attacker can use a huge amount of funds to manipulate
the token price. For instance, a borrower can borrow more

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

4

TABLE I: The definition of basic DeFi actions.

Name Symbol Attributes

Basic Action Ba
Transfer T spender, recipient, amount, token
Minting M recipient, amount, token
Burning B spender, amount, token

tokens than the outstanding principal balance of the collateral
(i.e., undercollateralization [39]) from the lending contract by
manipulating the collateral’s price.

The type II attack is also known as the price oracle
manipulation attack. In general, it consists of three steps.

1) Hoard: The attacker hoards (or buys) some token X.
2) Pump: Since the victim contract depends on the token X’s

price in DEX, the attacker uses a huge amount of funds
to manipulate the DEX pool, e.g., to pump the token X’s
price.

3) Dump: The attacker dumps (or sells) all hoarded token X to
the victim contract or uses the hoarded token as collateral
at a pumped price that is much higher than the market
price.

These two attacks typically require the attacker to have
a huge amount of funds to manipulate the price. Due to
the invention of the flash loan, everyone has the ability to
temporarily control a huge amount of funds, which make price
manipulation attacks possible.

IV. DEFI SEMANTICS

This work aims to detect price manipulation attacks, follow-
ing the steps shown in Section III-B and III-C. This requires
understanding DeFi semantics, e.g., the trading or swapping
of tokens, since the behaviors in each step are expressed
with high-level DeFi semantics. However, the raw transactions
obtained from the blockchain only contain primitive informa-
tion, e.g., token transfers and smart contract invocation. There
exists a semantic gap between the raw transactions and DeFi
semantics.

To fill this gap, we first present the definition of DeFi
actions (Section IV-A), including basic actions and advanced
actions. Then, we propose our method to identify basic actions
(Section IV-B) and advanced actions (Section IV-C). We
also illustrate three challenges and our solutions during this
process. Note that, all the described semantics are the actions
that can be extracted in one raw transaction (all the external
and internal transactions initiated from an external transaction
in Fig. 1). We do not consider the actions that are expressed
by the combination of multiple raw transactions.

A. DeFi Actions Definition

Based on our comprehensive study of the smart contracts
and transactions of top DeFi apps (the list is shown in
Appendix.), we categorize DeFi actions into three basic actions
and five advanced actions.

1) Basic Actions: As shown in Table I, the basic actions
are token transfer, token minting, and token burning. The
token transfer action (denoted as T) has four attributes that
can precisely describe its semantics, e.g., spender transfers
amount of token to recipient. The other two are similar,
but M does not have the spender (or the spender is the zero
address), and B does not have the recipient (or the recipient
is a burn address such as a zero address).

2) Advanced Actions: Besides, as shown in Table II, we
define five advanced actions expressed in basic actions.
Trade A trader transfers in one kind of token, and then
a vault contract or a DEX pool transfers out another one.
Therefore, we define a trade action (Tr) as two token transfers,
Tin and Tout.
Depositing A depositor transfers one or more underlying
token(s) to a DeFi app, and the app mints to the holder a
share token that is a certificate of owning these underlying
token(s). Therefore, we define a depositing action (De) as a
list of token transfers Ts and a token minting Mshare. This
action exists in multiple types of DeFi apps, e.g., depositing
tokens into DEX to provide liquidity, depositing collaterals
into lending apps, depositing tokens into yield farming apps,
etc.
Withdrawal On the contrary to depositing, a withdrawal
action (Wi) is defined as a list of token transfers Ts that
withdraw specified underlying tokens to the recipient and
a token burning Bshare that burns the withdrawal (share)
certificate.
Borrowing A debtor borrows the amount of the token (the
loan token) from a lending app, and the borrowed loan token
is transferred (or minted) to the recipient. The recipient can
be the same or different from the debtor. To borrow tokens,
the debtor should deposit collaterals in advance. Besides, the
app will mint a debt token to the debtor, denoting that the
address owns a debt from the app. Therefore, in our definition,
a borrowing action (Bo) consists of a basic action of T or M
(BaT/M) and a token minting action Mdebt.
Repayment This is an opposite action of Bo, and it has
the opposite definition. A repayment action (Re) consists of
a basic action of T or B (BaT/B) in which the payer repays
(or burns) the loan token and an action Bdebt to burn the debt
token of the debtor.

B. Basic Actions Identification
The identification of basic actions is straightforward. First,

for the native token transfer, we can locate the value field in
the transaction. For the ERC-20 token transfer, we can look
up the emitted events. Second, if a token transfer’s spender
is the zero address, then it’s a token minting action. Similarly,
if recipient is the zero address, then it’s a token burning.

C. Advanced Actions Identification
Identifying an advanced action is far more difficult than

identifying a basic action because there is no unified imple-
mentation standard. For example, there is no unified standard
for a contract to implement a trade action. However, our ob-
servation shows that the advanced actions are combinations of
basic actions, complying with the concept of DeFi Lego [40].

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

5

TABLE II: The definition of advanced DeFi actions

Name Symbol Attributes Derived Attributes
Advanced Action Adv
Trade Tr Tin, Tout trader, recipient, tokenin, amountin, tokenout, amountout, pool
Depositing De Ts, Mshare depositor, holder, tokens, tokenlp, amounts, amountlp, pool
Withdrawal Wi Ts, Bshare holder, recipient, tokens, tokenlp, amounts, amountlp, pool
Borrowing Bo BaT/M , Mdebt debtor, recipient, token, amount, pool
Repayment Re BaT/B , Bdebt payer, debtor, token, amount, pool
Collateral Borrowing Cb De, Bos debtor, Tcoll, Tsbo, tokencoll, amountcoll, tokens, amounts, poolcoll

However, we still face three challenges when implementing
the idea.�
function swap1(IERC20 tokenIn, uint amountIn, IERC20

tokenOut, address recipient) {
...... //calculate amountOut
tokenIn.transferFrom(msg.sender, this, amountIn);//T_in
tokenOut.transfer(recipient, amountOut);//T_out
emit Exchange1(msg.sender, tokenIn, tokenOut, amountIn,

amountOut);
}
function swap2(IERC20 tokenIn, uint amountIn, IERC20

tokenOut, address recipient) {
...... //calculate amountOut
tokenIn.transferFrom(msg.sender, this, amountIn);//T_in
ledger[recipient][tokenOut] += amountOut;//T_out
emit Exchange2(msg.sender, tokenIn, tokenOut, amountIn,

amountOut);
}
� �

Listing 1: example functions to operate the trade action

1) Numerous Basic Actions: A raw transaction may interact
with multiple DeFi apps and contain numerous basic actions.
For instance, as Listing 1 shows, an invocation of the function
swap1 will trigger two token transfers (T) that should be
identified as the input (Tin) and output (Tout) of the trade
(Tr). We can combine them as a trade because the same
function invocation triggers these two token transfers (calling
the swap1). Such information should be retrieved from the raw
transaction to help identify advanced actions.

To address this issue, we construct a cash flow tree for a raw
transaction (Section V-A). The cash flow tree preserves the
relationship between basic actions. By post-order traversing
the tree, we can use the most relevant basic actions to
identify advanced actions. For instance, the two token transfers
triggered in swap1 can be identified to generate the advanced
trade action.

2) Internal Token Ledgers: A few DeFi contracts maintain
an internal ledger to record the number of tokens that are
temporarily deposited by users, without minting a share token
(or LP token) to users. As shown in the function swap2 in
Listing 1, it does not transfer the tokenout to the user but
records the related states in an internal ledger (ledger). As a
result, any trade operated by the function swap2 can not be
identified because we can not get the semantics of the trade’s
Tout from basic actions.

In this work, we leverage external information to solve this
issue. Specifically, we manually feed external information into
our system that leverages it to identify internal basic actions
(Section V-B2).

3) Inter-contract Token Transfers: Inter-contract token
transfers exist widely in DeFi ecosystem, leading to the

T1:

T2:

T3:

T4:

Tr1Tr2

U
x token A

UC

UC
x token A

DEX

DEX
y token B

UC

UC
y token B

U

(a) With a redundant trade Tr2.

T5:

T6:

M1:

M2:

De1De2

U
x token C

YF

YF
x token C

DEX

y token D
YF

z token E
U

∅

∅

(b) Without redundant trade.

Fig. 2: Inter-contracts token transfers. U: a user; UC: a user-
controlled contract; DEX: a DEX contract; YF: a yield farming
contract; ∅: zero address.

possibility of identifying redundant trades. For example, as
shown in Fig. 2a, the two token transfers (T1 and T4) can be
identified as a trade (Tr2). However, this trade is redundant
since the actual trade is performed by the DEX contract (Tr1)
rather than the user-controlled contract.

One straightforward method to solve this issue is to merge
token transfers carrying the same token, e.g., merging T1 and
T2 as a new token transfer T12 and merging T3 and T4 as
T34. Then the T12 and T34 can be combined as a trade.
However, this may cause issues in some cases. For example,
as shown in Fig. 2b, the user deposits x token C into the
yield farming contract (T5), which then mints z token E as his
share certificate (M2). Furthermore, the yield farming contract
invests the x token C into a DEX contract. 3 Similarly, it
gets minted y token D as its share certificate. In essence, two
DeFi advanced actions (De1 and De2) are operated by the
yield farming contract and the DEX contract, respectively.
Therefore, if we merge the two token transfers (T5 and T6)
into one, then we will miss the second deposit (De2). Our
system connects token transfers carrying the same token rather
than merging them to handle that. Through the connection,
we can prevent the identification of redundant trades without
missing any advanced actions. The details are discussed in
Section V-B1.

V. METHODOLOGY

In this section, we elaborate on the methodology to detect
price manipulation attacks. Fig. 3 shows the workflow. Specif-
ically, the input of our methodology is the invocation trace of
a raw transaction. We first recover the trace’s tree structure

3In practice, a yield farming contract often has more than one investment
channel and automatically adjusts its investment strategy according to the
earning volatility.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

6

CFT
Construction

an EVM-transaction's
trace

Semantics
Lifting

Attack
Detection

 DEFIRANGER

Fig. 3: The workflow of our system.

TABLE III: The symbols used in function invocation and
events. For a function invocation, caller is the caller address;
context is the callee address; value is the amount of trans-
ferred native token; sig is the function signature being called;
args are the arguments. For an event, context is the address
of the contract emitting the event; sig is the signature of the
event; args are the arguments of the event.

Name Symbol Fields

Invocation Iv caller, context, value, sig, args
Event Ev context, sig, args

and identify the basic DeFi actions to construct the cash flow
tree (Section V-A). Then, we lift the tree’s DeFi semantics
(Section V-B) to get the advanced actions. Finally, we use
predefined patterns expressed with DeFi semantics to detect
the price manipulation attack (Section V-C).

A. CFT Construction

The invocation trace of a raw transaction consists of a list
of smart contract function invocations and events. Table III
defines the function invocation and the event.

As described in Section IV-C1, we first construct the Cash
Flow Tree (CFT) for a raw transaction and then follow the
rules in Table IV to identify basic DeFi actions. The CFT has
three types of nodes.
Invocation node The root node is an invocation node that
contains the first invocation (the external transaction) with the
transaction launcher as its caller, and all intermediate nodes
are invocation nodes. In addition, a few invocation nodes are
leaf nodes because they contain invocations that do not trigger
other invocations, nor emit events or transfer native tokens.
Event node All event nodes are leaf nodes, and the event
contained in each event node is emitted by the invocation
contained in its parent node.
Basic node All basic nodes are leaf nodes. Each node
corresponds to the basic actions, including token transfer,
minting, and burning.

B. Semantics Lifting

We identify advanced DeFi actions inside the tree to add
a new type of node into the tree, i.e., advanced node. All
advanced nodes are leaf nodes. We call basic and advanced
nodes as action nodes for a better description.

The purpose of semantics lifting is to generate advanced
actions. Specifically, we lift CFT’s semantics by recursively
lifting all its subtrees’ semantics with a post-order traversal,
using the following three operations in sequence, i.e., connec-
tion, insertion, and combination.

TABLE IV: The rules of identifying basic actions.

Condition Assignment

Iv Iv.value > 0 T

T.spender ← Iv.caller
T.recipient← Iv.context
T.token← ð
T.amount← Iv.value

Ev

Ev.sig = T
Ev.args[2] > 0
Ev.args[0] 6= ∅
Ev.args[0] 6= Ev.context
Ev.args[1] 6= ∅
Ev.args[1] 6= Ev.context

T

T.spender ← Ev.args[0]
T.recipient← Ev.args[1]
T.token← Ev.context
T.amount← Ev.args[2]

Ev

Ev.sig = T
Ev.args[2] > 0
Ev.args[0] = ∅
or Ev.args[0] = Ev.context

M
M.recipient← Ev.args[1]
M.token← Ev.context
M.amount← Ev.args[2]

Ev

Ev.sig = T
Ev.args[2] > 0
Ev.args[1] = ∅
or Ev.args[1] = Ev.context

B
B.spender ← Ev.args[0]
B.token← Ev.context
B.amount← Ev.args[2]

ð: the native token of a blockchain.
∅: zero address.
T: the signature of ERC-20 standard event Transfer.

TABLE V: The rules of connection.

Conditions Assignment

Ba1, Ba2

Ba1.token = Ba2.token
Ba1.recipient = Ba2.spender
Ba1.recipient 6= ∅
Ba2.spender 6= ∅
Ba1.remainsout > 0
Ba2.remainsin > 0

Ba1
a
99K Ba2

Ba1.remainsout −= a
Ba2.remainsin −= a

∅: zero address.
a: min(Ba1.remainsout, Ba2.remainsin).

1) Connection: To avoid the identification of redundant
trades (Section IV-C3), we connect basic actions carrying the
same token in advance. We add two fields to each basic action
to support the operation: remains in and remains out. The
first field indicates how much token comes from spender’s
savings, and the latter indicates how much token does not
flow to the following actions. Both two fields are initialized
as Ba.amount. Table V shows the detailed rules of connecting
basic actions. Note that the connection is also applied to
advanced actions because each advanced action consists of
basic actions.

2) Insertion: We leverage the external information ex-
tracted manually to identify internal basic actions (Sec-
tion IV-C2). The external information consists of six
fields, sigf , sige, locspender, locreceipient, loctoken, and
locamount, which can help us identify an internal basic ac-
tion. Specifically, the two signature fields, sigf and sige,
indicate the function signature and event signature, respec-
tively. We take the code in Listing 1 as an example,
sigf and sige is swap2(address, uint256,address) and
Exchange2(address,addr- -ess,address,uint256,uint256),
respectively. If we find them in a subtree, we can extract the
semantics of an internal basic action, e.g., spender, recipient,
token, and amount. In the example, locspender, locrecipient,
and loctoken is the invocation’s context address (Iv.context),
caller address (Iv.caller), and third argument (Iv.args[2]),
respectively, and locamount is the event’s fifth argument

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

7

TABLE VI: The rules of combination.

Conditions Assignment

Iv

T1, T2

T1.token 6= T2.token
T1.spender ⇒ Iv
T2.recipient⇒ Iv

Tr
Tr.Tin ← T1

Tr.Tout ← T2

T (M1), M2

T (M1).token 6= M2.token
T (M1).amount = M2.amount
T (M1).recipient⇒ Iv
M2.recipient⇒ Iv

Bo
Bo.Ba← T (M1)
Bo.Mdebt ←M2

T (B1), B2

T (B1).token 6= B2.token
T (B1).amount = B2.amount
T (B1).spender ⇒ Iv
B2.spender ⇒ Iv

Re
Re.Ba← T (B1)
Re.Bdebt ← B2

T , M
T.token 6= M.token
T.spender ⇒ Iv
M.recipient⇒ Iv

De
De.Ts← {T}
De.Mshare ←M

B, T
B.token 6= T.token
B.spender ⇒ Iv
T.recipient⇒ Iv

Wi
Wi.Ts← {T}
Wi.Bshare ← B

De1, T

T.token /∈ De1.tokens
T.token 6= De1.tokenlp

De1.depositor ⇒ Iv
De1.holder ⇒ Iv
De1.pool = T.recipient

De2

De2.T s←
De1.T s ∪ {T}
De2.Mshare ←
De1.Mshare

Wi1, T

T.token /∈Wi1.tokens
T.token 6= Wi1.tokenlp

Wi1.holder ⇒ Iv
Wi1.recipient⇒ Iv
Wi1.recipient = T.recipient
Wi1.pool = T.spender

Wi2

Wi2.T s←
Wi1.T s ∪ {T}
Wi2.Bshare ←
Wi1.Bshare

⇒: if an address addr satisfies addr = Iv.caller or addr ∈ Iv.args,
then addr comes from outside the function called in Iv, which is
symbolized as addr ⇒ Iv.

TABLE VII: The rules of discovering collateral borrowing.

Conditions Assignment

De, Bo
De.Ts.length = 1
De.holder = Bo.debtor
Bo | De.pool

Cb
Cb.De← De
Cb.Bos← {Bo}

Cb, Bo
Cb.debtor = Bo.debtor
Bo | Cb.poolcoll

Cb
Cb.Bos←
Cb.Bos ∪ {Bo}

Adv | contract: if the subtree with Adv’s parent node as the
root contains an invocation that fetches a specific state of contract
by calling it or retrieves its balance of a certain token by calling
balanceOf(contract), then Adv may depend on contract for that
state or token balance. We symbolize this dependency as Adv | contract.

(Ev.args[4]). After that, we construct an internal basic action
and insert a basic node containing it inside the subtree.

3) Combination: We infer advanced actions from basic
actions by applying the rules in Table VI. A rule addr ⇒ Iv
is to determine if the address (addr) is a user-owned account
for the invocation (Iv). Specifically, we identify an advanced
action from a pair of basic actions, and we pick the candidate
pairs from all action nodes inside the subtree following two
principles.
• To avoid the identification of redundant trades (the third

challenge), we do not pick pairs that are connected, either
indirectly or directly.

• To avoid repeated combinations for a pair, we pick only pairs
whose Lowest Common Ancestor (LCA) is the subtree’s
root node.

If a new advanced action is inferred, we combine the two
action nodes into one advanced action node. Consequently,
we remove the two nodes and insert the new one inside the
subtree.

C. Attack Detection

As described in Section III, both attacks involve hoarding
a certain token and then dumping it to make a profit. As a

TABLE VIII: The rules of detecting hoard-and-dump.

Symbol Rules

Tr1 & Tr2
Tr1.Tout

a
99K Tr2.Tin

BackTrack([Tr1.Tin])
Tr1.amountout

<
Trace([Tr2.Tout])
Tr2.amountin

Tr & Cb
Tr.Tout

a
99K Cb.Tcoll

BackTrack([Tr.Tin])
Tr1.amountout

<
Trace(Cb.Tsbo)
Cb.amountcoll

Cb & Tr

Cb.Tsbo.length = 1

Cb.Tsbo[0]
a
99K Tr.Tin

BackTrack(Cb.Tcoll)
Cb.amounts[0]

<
Trace([Tr.Tout])
Tr.amountin

De & Wi

De.pool = Wi.pool

De.Mshare
a
99K Wishare

BackTrack(De.Ts)
De.amountlp

<
Trace(Wi.Ts)
Wi.amountlp

De & Cb
De.Mshare

a
99K Cb.Tcoll

BackTrack(De.Ts)
De.amountlp

<
Trace(Cb.Tsbo)
Cb.amountcoll

dict1
amt1

< dict2
amt2

: ∀k ∈ dict1, k ∈ dict2 ∧ dict1[k]
am1

<
dict2[k]
amt2

result, our system first detects hoard-and-dump transactions as
candidates and then applies detailed detection rules on them
to further locate price manipulation attack transactions.

1) Detecting hoard-and-dump: Briefly, hoard-and-dump is
that the attacker dumps (or sells) tokens at a price that is
relatively higher than the price of hoarding (or buying) the
token. Note that the hoard-and-dump can be completed with
a series of advanced actions.

Discovering collateral borrowing Based on the advanced
actions, we further abstract the collateral borrowing action,
a composite action of depositing and borrowing, i.e., users
increase their collateral by depositing tokens in lending apps
and then borrow tokens from lending apps. Users may perform
the borrowing action multiple times after a single depositing
action. We employ the rules shown in Table VII to discover
collateral borrowings.

Comparing tokens’ value The most critical aspect of de-
tecting hoard-and-dump is comparing the cost of hoarding a
token to the revenue generated by dumping it. However, the
cost and revenue tokens may not be the same. For example, in
the Array Finance incident [41], the attacker deposits ETH to
hoard ARRAY tokens and dump tokens into aBPT. Directly
comparing the value of the cost token (ETH) and the revenue
token (aBPT) is not feasible.

As shown in Table VIII, our system takes two algorithms
(BackTrack and Trace in Appendix) to solve the issue. Based
on the identified DeFi semantics and connected actions, the
first algorithm gets the initial cost token set by backtracking,
and the second one retrieves the final revenue token set by
tracing. In the example, since the revenue token (aBPT) is
then converted into ETH for repaying flash loan, this solution
makes the comparison feasible. In addition, to complement
this solution, we maintain price information of tokens by using
offline price oracle and online price oracle from the DEX pool.

2) Detecting price manipulation attacks: In accordance
with the rules for detecting hoard-and-dump, we present our
attack patterns in Table IX. To describe each of these patterns,
we will provide at least one real-world case in Section VIII.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

8

0

1

32

1 2 3

4

5 6

5

6

7 8

7 8
Insert

Combine

4

0

1 4

Tr1

2 3 De

5

6

7 8

7

Tr2

º 1

Combine

Connect

Iv0, Iv1, Iv2, ……, Iv8
Ev1, Ev2, Ev3, ……, Ev8

0

1 4

Tr1

2 3 De

5

6

7 8

Bo

Tr2
Connect

Fig. 4: An illustrative example to show the workflow of our methodology. : Invocation node;4: Event node; , : Basic
node; : Advanced node; oi: the i− th internal basic action.

TABLE IX: The rules of detecting price manipulation attacks.

Actions Rules

Type I Price Manipulation Attack

Pattern I Tr1, Tr2, Tr3

Tr1 & Tr3
Tr2.trader 6= Tr3.trader
Tr2.pool = Tr3.pool
Tr2.tokenout = Tr3.tokenin

Pattern II Tr1, Ba, Tr2

Tr1 & Tr2
Tr1.pool = Tr2.pool
Ba.spender = Tr2.pool
Ba.token = Tr2.tokenin

Pattern III Tr1, De, Tr2

Tr1 & Tr2
Tr1.pool = Tr2.pool
De.pool = Tr2.pool
De.holder 6= Tr1.trader

Pattern IV Cb, Tr1, Tr2

Cb & Tr2
Tr1.trader 6= Tr2.trader
Tr1.pool = Tr2.pool
Tr1.tokenout = Tr2.tokenin

Type II Price Manipulation Attack

Pattern V Tr, Cb
Tr & Cb
∀Bo ∈ Cb.Bos,Bo | Tr.pool

Pattern VI De, Tr, Wi

De & Wi
Tr.pool 6= Wi.pool
Tr.trader = Wi.holder
Wi | Tr.pool

Pattern VII De1, De2/Wi1, Wi2

De1 & Wi2
De2/Wi1.pool 6= Wi2.pool
De2/Wi1.holder = Wi2.holder
Wi2 | De2/Wi1.tokenlp

Pattern VIII De, Tr, Cb

De & Cb
Tr.pool 6= Cb.poolcoll
Tr.trader = Cb.debtor
∀Bo ∈ Cb.Bos,Bo | Tr.pool

Adv | token: if the subtree with Adv’s parent node as the root contains
an invocation that retrieves the total supply of token by calling its
totalSupply(), then Adv may depend on token for its total supply.
We symbolize this dependency as Adv | token.

VI. AN ILLUSTRATIVE EXAMPLE

To better understand the workflow of our methodology, we
craft a price manipulation attack as an example. As shown in
Fig. 4, the input is the raw transaction’s trace, which includes
nine invocations and eight events.

We first construct a CFT containing nine invocation nodes,
one event node, and seven basic nodes. Among them, an
invocation node i contains the i − th invocation, and an
event node 4i contains the i− th event. Furthermore, a basic
node i or i is transformed from an event node 4i .

In the phase of semantics lifting, we perform connection,
insertion, and combination on the CFT’s all subtrees in the
order of post-order traversal. For better illustration, we roughly
divided the process into three iterations of the CFT:
• The first iteration involves subtrees whose root nodes are

2 , 3 , 4 , and 5 . Specifically, the first rule in Table VI is
successfully applied on (1 , 2) and (3 , 4) as well as the
forth rule is applied on (5 , 6). As a result, three advanced
nodes (Tr1, Tr2 and De) are created.
In addition, since we find a piece of external information
with the sigf as the function signature in 5 and sige as
the event signature in 48 , we apply the insertion operation
on them to insert an internal basic node o1 . After that,
the two basic actions in 7 and o1 conform to the second
combination rule. We combine them into an advanced node,
Bo .

• The second iteration involves the subtree whose root node
is 1 . Firstly, we let Tr1 to connect to Tr2 by applying the
rule in Table V on Tr1.Tout and Tr2.Tin.

• The third iteration involves the subtree whose root node is
0 . We apply the connection rule on Tr2.Tout and De.Ts[0]

to let Tr2 connect to De . After that, no rule can be applied.
The process of semantics lifting is done.
In the phase of attack detection, firstly, 7 contains an invo-

cation of a function (e.g., getAccountSnapshot) of De.pool,
enabling us to apply the first rule in Table VII on (De , Bo) to
discover a potential collateral borrowing (Cb). Secondly, the
BackTrack Algorithm finds that the cost token of hoarding
Tr2.tokenout is Tr1.tokenin that is equal to the revenue to-
ken (Cb.tokens[0]) of dumping Tr2.tokenout in Cb. Further-
more, since Tr1.amountin is less than Cb.amounts[0], the
fifth rule in Table VIII determines (Tr2, Cb) is a hoard-and-
dump (Tr2 & Cb). Finally, since 8 contains an invocation
of a function (e.g., getTokenToEthInputPrice) of Tr2.pool,
(Tr2, Cb) conforms to the Pattern V in Table IX. We then
mark this transaction as a potential price manipulation attack
(Type II).

VII. EVALUATION

Based on our methodology, we implement a prototype
named DEFIRANGER (around 6, 140 lines of Rust code). In
this section, we evaluate our system from two perspectives:
identifying DeFi semantics and detecting price manipulation
attacks, i.e., whether it can accurately identify DeFi seman-
tics, and whether it can detect real-world price manipulation
attacks.

A. Identifying DeFi Semantics

To the best of our knowledge, there is no existing ground
truth for advanced DeFi actions involved in EVM-transactions.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

9

Therefore, we first build a dataset of advanced DeFi actions
within a time window as the ground truth, and then ap-
ply DEFIRANGER to the transactions within the same time
window. Finally, we compare our results with the ground
truth to evaluate DEFIRANGER’s precision of identifying DeFi
semantics.

Ground truth We manually extract all DeFi actions involved
in Ethereum from Oct-07-2022 08:00 AM +UTC to 09:00 AM.
In total, the dataset includes 15, 272 transactions and 8, 117
advanced DeFi actions.

For the same 15, 272 transactions, DEFIRANGER identifies
7, 841 advanced DeFi actions. The comparison shows that
DEFIRANGER identifies 7, 808 (TP) correct and 33 (FP)
incorrect advanced DeFi actions and misses 309 (FN) correct
ones. As a result, we calculate the precision (#TP

#TP+#FP) as
0.996 and TPR (#TP

#TP+#FN) as 0.962.

Result analysis After manual analysis, we divide reasons
leading to false positives and false negatives into three cate-
gories:

• We do not have external information for certain less-known
DeFi apps, leading to 295 false negatives and 6 false
positives 4.

• A few smart contracts are not affiliated with DeFi apps
and cater to individual purposes. As the behavior of these
contracts can be arbitrary and may conform to our rules
of identifying advanced DeFi actions. This leads to 6 false
positives.

• A few uncommon designs that fall outside our expectations
result in 14 false negatives and 21 false positives. For exam-
ple, in some cases, the recipient of a trade is hard-coded in
the contract, which violates our rule (T2.recipient ⇒ Iv)
for identifying a trade action. Additionally, a trade consisting
of a token burning and a token minting does not align with
our definition of trade action in Table II.

B. Detecting Price Manipulation Attacks

System in Practice We deployed our system with our indus-
try partner (BlockSec [29]) to perform real-time detection for
price manipulation attacks from mid-2020 to 29th April 2023.
The system detected 14 zero-day security incidents. For each
zero-day incident, we were the first to detect and report it to
the affected project party and/or the community, demonstrat-
ing DEFIRANGER can detect real-world price manipulation
attacks.

Backtest To further evaluate DEFIRANGER’s precision of
detecting attacks, we collected 26 well-known incidents in-
volving price manipulation attacks shown in Table X. Then
we fed all the transactions of that day to conduct a backtest
experiment. As a result, the 26 days involves 92, 325, 423
EVM transactions (13, 611, 237 in Ethereum and 78, 714, 186
in BSC). DEFIRANGER marks 155 EVM transactions as
attacks. Among them, 129 (TP) are real attacks and 26 (FP)

4The failure to identify basic actions may result in false positives since the
identified error basic actions may be erroneously combined with other basic
actions.

are benign ones. Therefore, the precision is 0.832. All detected
attacks are shown in Appendix.

Unknown Historical Attacks After conducting a thorough
manual examination of the detection results, we find that
DEFIRANGER not only detected the 26 incidents that were
previously known, but also identified 15 additional incidents
(that were unknown by the community), as indicated in
Table X. Note that these incidents can not be found by
searching keywords or transactions’ hash, and the blockchain
explorer [42] does not provide any label for these malicious ac-
counts. Therefore, we name them unknown historical security
incidents. In Section VIII, we will present a comprehensive
analysis of these 41 incidents.

False Positive Analysis We classify the reasons of 26 false
positives into three categories.

• Some token contracts impose a transfer fee on the spender.
A trade of buying such a token includes a token transfer with
the spender as an DEX pool, and the basic action burning
the DEX pool’s transfer fee is likely to match Pattern II,
leading to 17 false positives.

• Certain DEX contracts apply a trade fee and subsequently
transfer the fee to another account. The token transfer
carrying the trade fee is also prone to be detected by Pattern
II, resulting in 5 false positives.

• A few token contracts have a buyback design that can
automatically purchase the tokens themselves. If someone
intends to sell such a token, the buyback mechanism will
be triggered to stabilize its market prices. Consequently, we
mark the detected 4 EVM transactions (by Pattern I or III)
as false positives.

C. Comparison with Existing Tools

Existing tools can be roughly divided into two categories
according to their scenarios. Tools [43], [44], [19], [45], [17],
[16], [46], [47] detect vulnerabilities in smart contract layer
(SC layer [48]) by applying program analysis techniques on
bytecode or source code, e.g., symbolic execution and formal
verification. These tools aim to prevent vulnerable contracts
from being deployed on the chain, while there are other tools
that aim to protect on-chain contracts from being attacked.
They depend on pre-defined rules [26], [49], [28], [27], and
transaction profits [50], [51] to detect on-chain or pending
attack transactions.

As a rule-based tools, DEFIRANGER differs from the four
existing tools in the sense that it works on protocol layer (PRO
layer [48]), while they work on smart contract layer (SC layer).
As a result, they can not detect attacks in PRO layer, e.g., price
manipulation attacks.

Profit-based tools aim to discover profitable transactions that
include not only attacks but also benign transactions. As shown
in APE [51]’s historical analysis, among the 169 profitable
transactions, 68 of them belongs to arbitrage or liquidation.
The fact that nearly half of cases are false alarms indicates
that their positioning differs from DEFIRANGER and cannot
detect attacks in a high precision.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

10

TABLE X: Real world incidents involving price manipulation
attacks.

Incident Date(s) Chain Zero-day ?
(Profit)

1. bZx hack I Feb 15, 20 ETH ×
2. bZx hack II Feb 18, 20 ETH ×
3. Balancer(STA/STONK) Jun 28, 20 ETH ×
4. Loopring Sep 30, 20 ETH X($29K) [52]
5. Dracula Oct 08, 20 ETH X($8.5K)
6. Harvest Finance Oct 26, 20 ETH ×
7. Plouto Finance Oct 29, 20 ETH X($650K) [53]
8. Cheese Bank Nov 06, 20 ETH ×
9. Value DeFi Nov 14, 20 ETH ×
10. Seal Finance Nov 15, 20 ETH X($4.25K) [54]
11. Warp Finance Dec 17, 20 ETH ×
12. Belt Finance May 29, 21 BSC ×
13. Array Finance Jul 18, 21 ETH X($516K) [55]
14. Zenon Nov 20, 21 BSC ×
15. CollectCoin Dec 01, 21 BSC X($1M) [56]
16. IVM Dec 17, 21 BSC X($1.8K) [57]
17. MIGE Feb 09, 22 BSC X($42) [58]
18. bDollar May 21, 22 BSC ×
19. Novo May 29, 22 BSC ×
20. Fswap Jun 13, 22 BSC X($432K) [59]
21. Inverse Finance Jun 16, 22 ETH ×
22. SpaceGodzilla Jul 13, 22 BSC X($26K) [60]
23. HEALTH Oct 20, 22 BSC X($8.8K) [61]
24. ULME Oct 25, 22 BSC X($50K) [62]
25. BSCAnt3 Jan 19, 23 BSC X($426K) [63]
26. SFM Mar 28, 23 BSC X($8M) [64]

Unknown Historical Attacks

27. ARFI; 28. BWHALE; 29. LUME; 30. VOOP; 31. CB3; 32. TRM;
33. BLACK07; 34. CUSE; 35. FCN; 36. OnlyUp; 37. CAC; 38. MCC;
39. Dr.Wolf; 40. ACMasterChef; 41. GodLight

VIII. ATTACK ANALYSIS

After deeply analyzing all incidents in Table X, we shed
lights on the root causes of vulnerabilities. Specifically, we find
the root causes are falling into four types, i.e., access control,
design compatibility, slippage check, and price dependency.
The first three are related to type I price manipulation attack
and the last one is the main reason for type II attack.

In this section, we elaborate on our analysis of vulnerabili-
ties and attacks involved in these 40 incidents 5, and addresses
of DeFi contracts to be mentioned are shown in Appendix.

A. Access Control (14 ∼ 17, 19, 25 ∼ 33, 41)

The access control issue mainly refers to the case that a
few token contracts do not perform user authentication on
critical interfaces, e.g., burn and transferFrom. Specifically,
Zenon, CollectCoin, IVM, MIGE, SFM, BSCAnt3, ARFI,
BWHALE, LUME, VOOP, CB3, TRM, and BLACK07 do
not verify the a caller’s identity before allowing the caller to
burn tokens, which means an attacker can easily burn anyone’s
above tokens. Furthermore, Novo and GodLight do not verify
a caller’s authority before allowing the caller to spend other
users’ tokens. Similarly, that means an attacker can spend
anyone’s tokens. The former is called public burn and the
latter is known as public transferFrom.

Attack analysis Specifically, the attacker exploits the vul-
nerable interfaces (burn or transferFrom) to transfer (or burn)

5Since Fswap is not open source, we can not confirm our analysis.

the token from the DEX pool, thereby greatly increasing the
token’s price in the DEX. Finally, the attacker can easily drain
out the DEX pool.

All attacks involving vulnerabilities of access control con-
form to Pattern II in Table IX.

B. Design Compatibility

Some developers attempt to use certain inherent mecha-
nisms to regulate tokens’ market prices automatically. Specif-
ically, these mechanisms may automatically alter the balance
of users. Such mechanisms may be incompatible with DEX
contracts. This subsection discusses vulnerabilities arising
from the compatibility between the design of DEX contracts
and certain tokens’ inherent mechanisms, such as the deflation
mechanism, selling-fee mechanism, price hedging mechanism,
and buyback mechanism.�
function swapExactAmountIn(

address tokenIn, uint tokenAmountIn, address tokenOut,
......

) external {
......
tokenAmountOut = calcOutGivenIn(....., tokenAmountIn);
......

}
� �
Listing 2: code snippet of Balancer V1

1) Deflation mechanism (3, 23, 39): STA and STONK ap-
ply a transfer fee of 1% and 0.3125%, respectively, designed
to encourage users to hold such tokens rather than sell them.
However, a 100% fee is applied to token transfers involving a
minuscule amount (e.g., 2e−18) of these tokens. Such a design
is incompatible with certain DEX contracts. For instance,
as shown in Listing 2, the contract calculates the tokenOut

amount based on the externally passed tokenAmountIn param-
eter. Consequently, the 100% transfer fee results in the contract
swapping out WBNB without receiving any STA/STONK. In
addition, the deflation mechanism in HEALTH and Dr.Wolf
directly burns a certain percentage of the balance in a DEX
pool with each transfer, thereby lifting the price.
Attack analysis In attacks of Balancer (STA/STONK), the
attacker performs one or multiple large trades of WBNB
for STA/STONK, intentionally unbalancing the DEX contract
and driving up the price of STA/STONK. Subsequently, the
attacker repeatedly swaps a minuscule amount of STA/STONK
for WBNB until the DEX contract is fully drained. During
this phase, the DEX contract dispenses a significant amount
of WBNB per trade but does not receive any STA/STONK
in return, which results in the price of STA/STONK not
decreasing with sales. Attacks against HEALTH/Dr.Wolf is
similar and more straightforward.

These attacks conform to Pattern II.
2) Selling fee mechanism (34, 35): To encourage users to

hold tokens, CUSE and FCN employ a mechanism of imposing
an additional selling fee for each sale. This mechanism is trig-
gered when the recipient of a transfer is a pre-configured DEX
contract. However, this trigger condition does not account for
Uniswap pools’ skim function, which is designed to force
DEX pools’ balances to match their reserves. It allows anyone
to withdraw tokens that are not considered part of liquidity

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

11

and transfer them to a specified account. By calling skim and
designating a pre-configured DEX contract as the recipient,
the selling fee mechanism can be unexpectedly triggered.
Attack analysis In related attacks, the attacker first hoards a
certain amount of CUSE/FCN by selling BUSD. Secondly, the
attacker takes three steps to exploit the selling fee mechanism:
1) Transfers the hoarded CUSE/FCN to a DEX contract

supporting CUSE or FCN.
2) Invokes the DEX contract’s skim and designates another

DEX contract that is pre-configured in CUSE/FCN as the
recipient. As a result, the first DEX contract transfers these
CUSE/FCN plus selling fee to the second DEX contract.
The payment of the selling fee makes the first DEX contract
lose some reserves of CUSE/FCN, thereby lifting the price
of them.

3) Invokes skim of the second DEX contract to withdraw these
CUSE/FCN back to the attacker.

Finally, the attacker sells the hoarded CUSE/FCN in the first
DEX contract, making a profit from the inflated price of
CUSE/FCN.

Attacks involving CUSE and FCN conform to Pattern II.
3) Price hedging mechanism (36): To minimize the impact

of market behaviors on the token price, OnlyUp utilizes a
price hedging mechanism that mints some OnlyUp to a DEX
contract when someone purchases the token. The inflationary
approach aims to hedge the price increase resulting from token
buys. Conversely, when OnlyUp are sold, the mechanism burns
some OnlyUp from the DEX contract, employing deflation to
mitigate the price decreases.

However, the developer of OnlyUp failed to use the sync

function of Uniswap contracts correctly. The sync function is
designed to force DEX pools’ reserves to match their balances.
By calling it, tokens that are not considered part of liquidity
can be transformed into the pool’s reserves. In the case of a
token buy, the price hedging mechanism does not invoke sync

after minting the token. As a result, the minted token becomes
part of the liquidity transferred by the buyer. Furthermore,
during a token sale, the price hedging mechanism calls sync

after burning the token, leading to a price increase before the
sell operation occurs.
Attack analysis Due to the vulnerable price hedging mech-
anism, the attacker can drain out the DEX contract by repeat-
edly buying OnlyUp and selling it.

Attacks involving OnlyUp conform to Pattern II.
4) Buyback mechanism (37, 38): To support the market

price, CAC/MCC has a buyback mechanism that buys itself for
each transfer. However, the buyback mechanism is potentially
vulnerable. That’s because it fixedly uses 1% WBNB balance
to buy back CAC/MCC, and there is no limit on the buyback
frequency. Consequently, attackers can abuse the mechanism
via token transfers carrying a minuscule amount (e.g., 1e−18)
of the token.
Attack analysis In related attacks, the attacker first hoards
some CAC/MCC, and then abuses the buyback mechanism to
drive up the price of CAC/MCC. Finally, the attacker makes
a profit by dumping the hoarded CAC/MCC.

Attacks involving CAC and MCC conform to Pattern I.

C. Slippage Check(1, 4, 5, 10, 18, 22, 24, 40)

To avoid potential losses from unexpected slippage, it is
crucial to conduct a slippage check before any interaction with
DEX contracts, especially for public interfaces. Unfortunately,
some DeFi contracts do not implement this feature. For
example, bZx iETH offers a margin trading interface called
marginTradeFromDeposit, which enables users to amplify
their investment funds by depositing a certain amount of
margin. However, the absence of a slippage check leaves the
contract vulnerable to malicious trading, potentially leading to
losses exceeding the margin amount.

Similarly, some DeFi contracts such as Loopring, Dracula,
Seal, bDollar, SpaceGodzilla, ULME, and ACMasterChef also
have interfaces to trade or add liquidity in DEX contracts with
the purpose of influencing prices of their protocol tokens. The
lack of a slippage check makes these contracts vulnerable to
the potential manipulation of DEX contracts.
Attack analysis In bZx hack I, the attacker first hoards some
WBTC by borrowing from a lending app, and then deposits
1, 300 ETH as the margin to exploit the vulnerable interface,
which makes a large trade (5, 638 ETH for 51 WBTC) with
unexpected slippage. Note that, this trade pulls up the price
of WBTC. Finally, the attacker swaps the hoarded WBTC for
ETH to make a profit.

Additionally, in other attacks, the attacker first makes a trade
to manipulate a DEX contract and then forces these vulnerable
DeFi contracts to swap or add liquidity in the DEX contract
by exploiting these vulnerable interfaces. Finally, the attacker
makes a reversed trade to make a profit.

The attack involved in bZx hack I conforms to Pattern IV,
attacks against Loopring, Dracula, Seal, ULME, and ACMas-
terChef conform to Pattern I, and attacks against bDollar and
SpaceGodzilla conform to Pattern III.

D. Price Dependency (2, 6 ∼ 9, 11 ∼ 13, 21)

There are nine DeFi contracts that have vulnerabilities re-
lated to insecure price dependency. They calculate prices based
on real-time quotations from DEX contracts, real-time reserves
in DEX contracts, or the total supply of an external token. All
three price sources are susceptible to price manipulation.

In the following formulas, AMtoken, ABtoken, ADtoken,
and ARtoken indicate the amount of token minted to, burned
by, deposited by, and redeemed to a user, respectively. Rtoken

refers to the current reserves of token in the related contract.
UPtoken indicates the unit price of token, and TStoken is the
total supply of token.

AMfUSDC =
ADUSDC

RUSDC + ToUSDC(RyCrv)
∗ TSfUSDC

ARUSDC =
ABfUSDC

TSfUSDC
∗ (RUSDC + ToUSDC(RyCrv))

(1)
1) Depending on real-time quotations: The lending con-

tract bZx iETH allows users to borrow through over-
collateralization. However, it assesses the value of collateral
by fetching prices from a DEX contract. That’s vulnerable
to price manipulation. Furthermore, vulnerabilities found in

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

12

yield farming contracts, i.e., Harvest, Plouto, Value DeFi, and
Belt are similar. For example, one of Harvest’s strategies is to
deposit users’ USDC into Curve Y pool [65] to add liquidity.
During this process, users receive fUSDC minted by Harvest
as certificates, and Harvest receives yCrv minted by the Y
pool as certificates. As shown in formula 1, Harvest depends
on the real-time price (ToUSDC) provided by the Y pool
to calculate fUSDC’s price.
Attack analysis In bZx hack II, the attacker first manipulates
the price of sUSD in bZx contract by making multiple ETH to
sUSD trades and then exploits the inflated price by depositing
the hoarded sUSD as collateral, enabling the attacker to borrow
a significantly greater amount of ETH than the amount initially
sold.

In the Harvest hack, the attacker utilizes flash loan to
execute a large USDT to USDC trade, which can pull up the
price of USDC in the Curve Y pool. The attacker then deposits
USDC in Harvest to hoard fUSDC. Due to the manipulated
pricing mechanism in Harvest, the deposited USDC is over-
valued, enabling the attacker receive an excessive amount of
fUSDC. Next, the attacker makes a reverse trade of the initial
trade, thereby restoring Curve Y Pool. Lastly, the attacker
burns the hoarded fUSDC to withdraw more USDC than is
originally deposited.

The attack involved in bZx hack II conforms to Pattern
V, and attacks against Harvest, Plouto, Value DeFi, and Belt
conform to Pattern VI.

UPLPtoken =
n ∗Rtoken0 ∗ UPtoken0

TSLPtoken

UPLPtoken =

∑n
i=0 Rtokeni ∗ UPtokeni

TSLPtoken

(2)

2) Depending on real-time reserves: Cheese Bank, Warp
Finance, and Inverse Finance are lending contracts that accept
LP tokens, certificates of liquidity added to DEX contracts,
as the collateral. Since the prices of these LP tokens cannot
be fetched directly, the three lending contracts use their own
pricing mechanism for LP tokens. As shown in formula 2,
Cheese Bank applies the first formula, while the other two use
another. However, both of these calculations are vulnerable to
price manipulation as the real-time reserves (Rtokeni) of an
DEX contract can be manipulated.
Attack analysis In all three attacks, the attacker first hoards
the LP token by adding liquidity in a DEX contract. Then, the
attacker utilizes flash loans to conduct a large trade, disrupting
the reserves of the DEX contract and inflating the LP token’s
price in these lending contracts. Finally, the attacker deposits
the hoarded LP token as collateral to borrow out other tokens
from these lending contracts. As a result of the overvalued
collateral, the attacker can make a profit from the borrowing.

These attacks conform to Pattern VIII.

ARaBPT = TSaBPT ∗ (1− (1− ABARRAY

TSARRAY
)2.3) (3)

3) Depending on the total supply of an external token:
Array Finance is a yield farming app that offers various
investment strategies. One such strategy involves investing

users’ ETH into an DEX contract on Balancer. Consequently,
users receive ARRAY as certificates, and Array receives aBPT
as certificates. Unlike other yield farming contracts, Array
redeems aBPT instead of ETH as the deposited token when
users withdraw their investment by burning their ARRAY. The
amount of redeemed aBPT is calculated based on the total
supply of aBPT (TSaBPT), which is externally controlled.
Therefore, manipulating the total supply of aBPT can further
influence the price calculation of ARaBPT .

Attack analysis In the attack against Array Finance, the
attacker first deposits ETH to hoard ARRAY and then utilizes
flash loans (in the form of DAI, USDC, WETH, WBTC, and
renBTC) to add liquidity in the Balancer DEX contract. The
injection of flash loans greatly increases the total supply of
aBPT and further drives up the price of ARRAY in Array
Finance. Finally, the attacker burns the hoarded ARRAY to
withdraw aBPT, which is more valuable than the originally
deposited ETH.

Attacks against Array Finance conform to Pattern VII.

IX. DISCUSSION

There are four potential reasons that may lead to false
negatives. First, although we aim to propose a general method
to recover high-level DeFi semantics, to address the challenge
of internal token ledgers, it inserts internal basic actions
based on external information, each piece of which depends
on a specific DeFi app. As a result, we need to remain
attentive to emerging DeFi apps, and timely update the external
information library for a few DeFi contracts having internal
token ledgers.

Second, our detection only focuses on an individual EVM
transaction, and DEFIRANGER cannot detect an attack across
EVM transactions. Fortunately, the cross-transaction attack is
not common since the attacker wants to hide their attack
intention by putting all attack logic inside one transaction.

Third, our tool depends on ERC20 event Transfer to iden-
tify basic actions, theoretically, tokens that are not compliant
with ERC20 standard 6 may lead to false negatives. However,
ERC20 is widely recognized as the de facto standard for
tokenization. The inconsistency of such tokens with ERC20
standard can hinder their market development. For example,
the inconsistency can hinder wallet apps from knowing these
token transfers. Therefore, in practical, inconsistent tokens are
not common and popular, and their impact is also limited.

Fourth, our tool relies on pre-defined rules to detect attacks,
and the insights behind these rules come from our understand-
ing of existing attacks. As a result, future potential variants
of price manipulation attacks may bypass our detection. To
address this common issue of rule-based tools, we will in-
corporate profit-based and anomaly-based approaches in the
future to strike a balance between false positives and false
negatives.

6TokenScope [66] has manually checked that 833 tokens may not emit the
event Transfer.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

13

X. RELATED WORK

A. Ethereum DeFi ecosystem

The wave of DeFi brings many traditional financial appli-
cations to Ethereum, which attempts to use the openness and
transparency of the blockchain technology to evolve finance
from opaque to transparency. Werner et al. [67] summarize
DeFi’s current development, including DeFi basic knowledge,
popular DeFi protocols, and DeFi security issues. Particularly,
Clark et al. [68], Pernice et al. [69], and Moin et al. [30]
perform the empirical study about current stablecoins’ protocol
design and provide the comprehensive taxonomy of stable-
coins with their insights. Wang [70] studies mathematical
models of AMMs. Bartoletti et al. [71] study various im-
plementations of existing lending apps. Furthermore, Perez
et al. [72] provide the first in-depth empirical study for
liquidations on protocols for loanable funds (PLFs), such as
lending apps. Liu et al. [73] present the first measurement for
DeFi price oracles. The knowledge of these studies can help
better understand the DeFi ecosystem.

B. DeFi security

1) Off-chain security issues: Front-running and Pump-and-
Dump are two typical threats for DeFi security. They mainly
focus on off-chain activities.

Front-running In traditional finance, front-running often
refers to a broker prioritizing his trade ahead of his clients’
market-moving order to benefit himself. Front-runners prior-
itize their transactions ahead of others by lifting transaction
fees Eskandari et al. [1] analyze the front-running issues across
the top 25 DeFi apps in Ethereum and present the evidence of
abnormal miners’ behaviors of purchasing cryptocurrencies for
front-running. Daian et al. [2] study bots’ arbitrage strategies
and reveal the situation of front-running between bots. Zhou
et al. [3] formalize the sandwich attack combining front- and
back-running actions and present an empirical evaluation on
it.

Pump-and-Dump (P&D) P&D often refers to a scheme that
boosts the price of a stock by misleading information. The
perpetrator of this scheme purchases a lot of these stocks in
advance and sells them after the price has been driven up.
Recently, this type of scheme also appears in the Ethereum
DeFi ecosystem. Kamps et al. [4] construct a group of patterns
by analyzing existing P&D schemes and define a set of identi-
fying criteria, which can detect suspected P&D behaviors. Xu
et al. [5] aggregate 412 P&D schemes in telegram channels and
build a machine learning model that can predict the likelihood
of a cryptocurrency being pumped.

2) On-chain security issues: Various DeFi protocols are
arising but with many security issues. Particularly, flash loan is
a nascent service that can lend any unsecured cryptocurrencies
to clients. With this temporary funding capacity, some secu-
rity issues have surfaced. Gudgeon et al. [74] demonstrated
a simulated governance attack with the flash loan on the
MakerDao [33]. Qin et al. [6] analyze two existing flash loan
attacks and propose an optimization strategy that can increase
the attacker’s benefit to 2.37 and 1.73 times the previous. Zhou

et al. [48] reveals a few insights from investigating academic
papers and real-world incidents. In addition, DeFiPoser [50]
and APE [51] both have the ability to detect DeFi attacks.
However, since their purpose is identifying profitable transac-
tions, which also include benign behaviors such as arbitrage
and liquidation, they cannot precisely detect attacks.

Our work is different from them and aims to detect two new
types of DeFi attacks.

C. Smart Contract Code Vulnerability

Ethereum smart contracts suffer from code vulnerabilities,
such as re-entrancy and integer overflow. Many systems have
been proposed to detect vulnerable smart contracts [16], [17],
[18], [20], [22], [23], [21] or real-world attacks [24], [25], [26],
[27], [49], [28]. For instance, Oyente [16] applies the symbolic
execution technique to detect code vulnerabilities. eThor [21]
leverages formal verification to reveal code vulnerabilities in
smart contracts. TXSPECTOR [49] and EthScope [28] focus
on uncovering historical attacks caused by code vulnerabilities
in Ethereum. These systems cannot be directly applied to
detect price manipulation attacks since they lack the capability
to recover DeFi semantics.

XI. CONCLUSION

In this work, we aim to detect two types of price manip-
ulation attacks on DeFi apps. To this end, we present a new
approach to automatically recover DeFi semantics from raw
transactions. Then, we detect attacks based on the recovered
DeFi semantics. We implemented our approach in a tool
named DEFIRANGER. The evaluation result shows that our
system can accurately recover DeFi semantics, and effectively
detect DeFi attacks. Our further analysis of the security
incidents shed light on the root cause of the vulnerabilities.

ACKNOWLEDGEMENT

We would like to thank all anonymous reviewers for their
helpful suggestions and comments to improve the paper.
This work is partially supported by the National Key R&D
Program of China (No. 2022YFE0113200) and the National
Natural Science Foundation of China (NSFC) under Grant No.
62172360, No. U21A20464, and No. U21A20467. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of funding agencies.

REFERENCES

[1] S. Eskandari, S. Moosavi, and J. Clark, “Sok: Transparent dishonesty:
front-running attacks on blockchain,” in International Conference on
Financial Cryptography and Data Security. Springer, 2019, pp. 170–
189.

[2] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning in decentralized exchanges,
miner extractable value, and consensus instability,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 910–927.

[3] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-frequency
trading on decentralized on-chain exchanges,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp. 428–445.

[4] J. Kamps and B. Kleinberg, “To the moon: defining and detecting
cryptocurrency pump-and-dumps,” Crime Science, vol. 7, no. 1, pp. 1–
18, 2018.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

14

[5] J. Xu and B. Livshits, “The anatomy of a cryptocurrency pump-and-
dump scheme,” in 28th {USENIX} Security Symposium ({USENIX}
Security 19), 2019, pp. 1609–1625.

[6] K. Qin, L. Zhou, B. Livshits, and A. Gervais, “Attacking the defi ecosys-
tem with flash loans for fun and profit,” in International conference on
financial cryptography and data security. Springer, 2021, pp. 3–32.

[7] “Pickle incident,” https://peckshield.medium.com/pickle-incident-root-
cause-analysis-5d73496ebc9f, 2020, [Online; accessed December-
2020].

[8] “Origin incident,” https://peckshield.medium.com/origin-dollar-
incident-root-cause-analysis-f27e11988c90, 2020, [Online; accessed
December-2020].

[9] “Akropolis incident,” https://peckshield.medium.com/akropolis-
incident-root-cause-analysis-c11ee59e05d4, 2020, [Online; accessed
December-2020].

[10] “bzx hack i,” https://peckshield.medium.com/bzx-hack-full-disclosure-
with-detailed-profit-analysis-e6b1fa9b18fc, 2020, [Online; accessed
December-2020].

[11] “bzx hack ii,” https://peckshield.medium.com/bzx-hack-ii-full-
disclosure-with-detailed-profit-analysis-8126eecc1360, 2020, [Online;
accessed December-2020].

[12] “Warpfinance incident,” https://peckshield.medium.com/warpfinance-
incident-root-cause-analysis-581a4869ee00, 2020, [Online; accessed
December-2020].

[13] “Cheese bank incident,” https://peckshield.medium.com/cheese-bank-
incident-root-cause-analysis-d076bf87a1e7, 2020, [Online; accessed
December-2020].

[14] “Value defi incident,” https://peckshield.medium.com/value-defi-
incident-root-cause-analysis-fbab71faf373, 2020, [Online; accessed
December-2020].

[15] “Harvest finance attack,” https://www.coindesk.com/harvest-finance-
24m-attack-triggers-570m-bank-run-in-latest-defi-exploit, 2020, [On-
line; accessed December-2020].

[16] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254–269.

[17] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 664–676.

[18] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2018,
pp. 259–269.

[19] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 531–548.

[20] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 1398–1409.

[21] C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei, “ethor:
Practical and provably sound static analysis of ethereum smart con-
tracts,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 621–640.

[22] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts.” in Ndss, 2018, pp. 1–12.

[23] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67–82.

[24] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar, “Online detection of effectively callback free
objects with applications to smart contracts,” Proceedings of the ACM
on Programming Languages, vol. 2, no. POPL, pp. 1–28, 2017.

[25] C. Ferreira Torres, M. Baden, R. Norvill, B. B. Fiz Pontiveros, H. Jonker,
and S. Mauw, “Ægis: Shielding vulnerable smart contracts against
attacks,” in Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, 2020, pp. 584–597.

[26] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” arXiv preprint
arXiv:1812.05934, 2018.

[27] T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu,
G. Chen, Z. He et al., “Soda: A generic online detection framework for
smart contracts,” in 27th Ann. Network and Distributed Systems Security
Symp. The Internet Society, 2020.

[28] S. Wu, L. Wu, Y. Zhou, R. Li, Z. Wang, X. Luo, C. Wang, and K. Ren,
“Time-travel investigation: toward building a scalable attack detection
framework on ethereum,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 31, no. 3, pp. 1–33, 2022.

[29] “Blocksec: Building blockchain security infrastructure,” https://blocksec.
com, 2021, [Online; accessed Nov-2023].

[30] A. Moin, K. Sekniqi, and E. G. Sirer, “Sok: A classification framework
for stablecoin designs,” in Financial Cryptography and Data Security:
24th International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10–14, 2020 Revised Selected Papers 24. Springer, 2020,
pp. 174–197.

[31] “Centre: Centre whitepaper,” https://www.centre.io/pdfs/centre-
whitepaper.pdf, 2018, [Online; accessed December-2020].

[32] “Tether: Fiat currencies on the bitcoin blockchain,” https://tether.to/wp-
content/uploads/2016/06/TetherWhitePaper.pdf, 2016, [Online; accessed
December-2020].

[33] “Makerdao,” https://makerdao.com/zh-CN/, 2015, [Online; accessed
December-2020].

[34] “Aave,” https://aave.com/, 2017, [Online; accessed December-2020].
[35] “Uniswap v2,” https://uniswap.org/, 2020, [Online; accessed December-

2020].
[36] “dydx,” https://dydx.exchange/, 2017, [Online; accessed December-

2020].
[37] “Front running,” https://en.wikipedia.org/wiki/Front-running, 2023, [On-

line; accessed Feb-2023].
[38] “Cross-market manipulation,” https://en.wikipedia.org/wiki/Market-

manipulation\#Cross-market-manipulation, 2023, [Online; accessed
Feb-2023].

[39] “Wiktionary: undercollateralized,” https://en.wiktionary.org/wiki/under-
collateralized, 2019, [Online; accessed April-2021].

[40] “Money lego: Defi’s building blocks,” https://phemex.com/academy/
defi-composability-money-lego, 2021, [Online; accessed May-2023].

[41] “Array finance incident,” https://blocksecteam.medium.com/the-
analysis-of-the-array-finance-security-incident-bcab555326c1, 2021,
[Online; accessed April-2023].

[42] “Bscscan,” https://bscscan.com, 2023, [Online; accessed Apr-2023].
[43] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A

data dependency-aware hybrid fuzzer for smart contracts,” in 2021 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2021,
pp. 103–119.

[44] H. Wang, Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu,
“Oracle-supported dynamic exploit generation for smart contracts,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 3,
pp. 1795–1809, 2020.

[45] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 778–788.

[46] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sailfish:
Vetting smart contract state-inconsistency bugs in seconds,” in 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp. 161–
178.

[47] J. Frank, C. Aschermann, and T. Holz, “{ETHBMC}: A bounded model
checker for smart contracts,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 2757–2774.

[48] L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais, “Sok: Decentralized
finance (defi) attacks,” in 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 2023, pp. 2444–2461.

[49] M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, “{TXSPECTOR}: Uncover-
ing attacks in ethereum from transactions,” in 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020, pp. 2775–2792.

[50] L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais, “On the just-
in-time discovery of profit-generating transactions in defi protocols,” in
2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp.
919–936.

[51] K. Qin, S. Chaliasos, L. Zhou, B. Livshits, D. Song, and A. Gervais,
“The blockchain imitation game,” arXiv preprint arXiv:2303.17877,
2023.

[52] “Loopring(lrc) protocol incident,” https://blocksecteam.medium.com/
loopring-lrc-protocol-incident-66e9470bd51f, 2020, [Online; accessed
Nov-2023].

[53] “Flash loan attack on plouto vault,” https://blocksecteam.medium.com/
flash-loan-attack-on-plouto-vault-197da1531758, 2020, [Online; ac-
cessed Nov-2023].

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

15

[54] “Security incident on seal finance,” https://blocksecteam.medium.
com/security-incident-on-seal-finance-fa79c27a1c3b, 2020, [Online; ac-
cessed Nov-2023].

[55] “The analysis of the array finance security incident,”
https://blocksecteam.medium.com/the-analysis-of-the-array-finance-
security-incident-bcab555326c1, 2021, [Online; accessed Nov-2023].

[56] “Blocksec twitter: Collectcoin,” https://x.com/BlockSecTeam/status/
1465974367729307651?s=20, 2021, [Online; accessed Nov-2023].

[57] “Blocksec twitter: Ivm,” https://x.com/BlockSecTeam/status/
1471682610703130625?s=20, 2021, [Online; accessed Nov-2023].

[58] “Blocksec twitter: Mige,” https://x.com/BlockSecTeam/status/
1491690164468391937?s=20, 2022, [Online; accessed Nov-2023].

[59] “Fswap twitter,” https://twitter.com/fswap2021/status/
1536643960185266178?s=61\&t=fEvdxndZYRecB4vOl4nFRw, 2022,
[Online; accessed Nov-2023].

[60] “Blocksec twitter: Spacegodzilla,” https://x.com/BlockSecTeam/status/
1547456591900749824?s=20, 2022, [Online; accessed Nov-2023].

[61] “Blocksec twitter: Health,” https://x.com/BlockSecTeam/status/
1583073442433495040?s=20, 2022, [Online; accessed Nov-2023].

[62] “Blocksec twitter: Ulme,” https://x.com/BlockSecTeam/status/
1584839309781135361?s=20, 2022, [Online; accessed Nov-2023].

[63] “Blocksec twitter: Bscant3,” https://x.com/BlockSecTeam/status/
1620074873795264512?s=20, 2023, [Online; accessed Nov-2023].

[64] “Blocksec twitter: Sfm,” https://x.com/BlockSecTeam/status/
1640894449122422784?s=20, 2023, [Online; accessed Nov-2023].

[65] “Curve.fi y pool,” https://curve.fi/iearn, 2020, [Online; accessed April-
2020].

[66] T. Chen, Y. Zhang, Z. Li, X. Luo, T. Wang, R. Cao, X. Xiao, and
X. Zhang, “Tokenscope: Automatically detecting inconsistent behaviors
of cryptocurrency tokens in ethereum,” in Proceedings of the 2019 ACM
SIGSAC conference on computer and communications security, 2019,
pp. 1503–1520.

[67] S. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and
W. Knottenbelt, “Sok: Decentralized finance (defi),” in Proceedings of
the 4th ACM Conference on Advances in Financial Technologies, 2022,
pp. 30–46.

[68] J. Clark, D. Demirag, and S. M. Moosavi, “Sok: Demystifying stable-
coins,” Communications of the ACM, Forthcoming, 2019.

[69] I. G. Pernice, S. Henningsen, R. Proskalovich, M. Florian, H. Elendner,
and B. Scheuermann, “Monetary stabilization in cryptocurrencies–design
approaches and open questions,” in 2019 Crypto Valley Conference on
Blockchain Technology (CVCBT). IEEE, 2019, pp. 47–59.

[70] Y. Wang, “Automated market makers for decentralized finance (defi),”
arXiv preprint arXiv:2009.01676, 2020.

[71] M. Bartoletti, J. H.-y. Chiang, and A. L. Lafuente, “Sok: lending pools in
decentralized finance,” in Financial Cryptography and Data Security. FC
2021 International Workshops: CoDecFin, DeFi, VOTING, and WTSC,
Virtual Event, March 5, 2021, Revised Selected Papers 25. Springer,
2021, pp. 553–578.

[72] D. Perez, S. M. Werner, J. Xu, and B. Livshits, “Liquidations: Defi
on a knife-edge,” in Financial Cryptography and Data Security: 25th
International Conference, FC 2021, Virtual Event, March 1–5, 2021,
Revised Selected Papers, Part II 25. Springer, 2021, pp. 457–476.

[73] B. Liu, P. Szalachowski, and J. Zhou, “A first look into defi oracles,”
in 2021 IEEE International Conference on Decentralized Applications
and Infrastructures (DAPPS). IEEE, 2021, pp. 39–48.

[74] L. Gudgeon, D. Perez, D. Harz, B. Livshits, and A. Gervais, “The
decentralized financial crisis,” in 2020 crypto valley conference on
blockchain technology (CVCBT). IEEE, 2020, pp. 1–15.

Siwei Wu is currently pursuing the Ph.D. de-
gree at College of Computer Science and Technol-
ogy, Zhejiang University and interning at a leading
blockchain company, BlockSec. His research inter-
ests mainly focus on smart contract security and
DeFi security.

Zhou Yu received her MSc in Computer Science
from the Beijing University of Posts and Telecom-
munications in 2023. Her research interests include
blockchain security, system measurement and AI
security.

Dabao Wang received the Bachelor degree in Com-
puter Science (with an Honors degree) from Monash
University. He is currently working towards a PhD
in the Department of Software Systems and Cyber-
security of the Faculty of Information Technology at
Monash University. Dabao is interested in all aspects
of security with a focus on the security of smart
contracts, and decentralized finance (DeFi) security.

Yajin Zhou received the Ph.D. degree in com-
puter science from North Carolina State University,
Raleigh, NC, USA. He is currently a ZJU 100 Young
Professor with the School of Cyber Science and
Technology, and the College of Computer Science
and Technology, Zhejiang University, China. His
research mainly focuses on smartphone and system
security, such as identifying real-world threats and
building practical solutions, mainly in the context of
embedded systems (or IoT devices).

Lei Wu is an Associate Professor with the School of
Cyber Science and Technology, and the College of
Computer Science and Technology, Zhejiang Univer-
sity, China. He obtained his Ph.D. degree from North
Carolina State University in 2015. His research in-
terest lies mainly in security areas, including system
security and blockchain security.

Haoyu Wang Haoyu Wang is a Professor in
the School of Cyber Science and Engineering at
Huazhong University of Science and Technology. He
received his PhD degree in Computer Science from
Peking University in 2016. His research covers a
wide range of topics in Software Analysis, Privacy
and Security, eCrime, Internet/System Measurement,
and AI Security. More information is available at:
https://howiepku.github.io/

Xingliang Yuan is currently a senior lecturer (aka
U.S. associate professor) with the Department of
Software Systems and Cybersecurity, Faculty of
Information Technology, Monash University, Aus-
tralia. He has authored or coauthored in prestigious
venues in cybersecurity, computer networks, and dis-
tributed systems, including ACM CCS, NDSS, IEEE
INFOCOM, IEEE Transactions on Dependable and
Secure Computing, IEEE Transactions on Informa-
tion Forensics and Security, and IEEE Transactions
on Parallel and Distributed Systems. His research

interests include data security and privacy, secure networked system, machine
learning security and privacy, and confidential computing. His research has
been supported by Australian Research Council, CSIRO Data61, and Oceania
Cyber Security Centre. He was the recipient of Dean’s Award for Excellence
in Research by an Early Career Researcher at Monash Faculty of IT in 2020,
the Best Paper Award in European Symposium on Research in Computer
Security (ESORICS) 2021, the IEEE Conference on Dependable and Secure
Computing (IDSC) 2019, and the IEEE International Conference on Mobility,
Sensing and Networking (MSN) 2015.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346888

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 12:04:44 UTC from IEEE Xplore. Restrictions apply.

