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The prosperity of Ethereum has led to a rise in phishing scams. Initially, scammers lured users into transferring
or granting tokens to Externally Owned Accounts (EOAs). Now, they have shifted to deploying phishing
contracts to deceive users. Specifically, scammers trick victims into either directly transferring tokens to
phishing contracts or granting these contracts control over their tokens. Our research reveals that phishing
contracts have resulted in significant financial losses for users. While several studies have explored cybercrime
on Ethereum, to the best of our knowledge, the understanding of phishing contracts is still limited.

In this paper, we present the first empirical study of phishing contracts on Ethereum. We first build a
sample dataset including 790 reported phishing contracts, based on which we uncover the key features of
phishing contracts. Then, we propose to collect phishing contracts by identifying suspicious functions from the
bytecode and simulating transactions. With this method, we have built the first large-scale phishing contract
dataset on Ethereum, comprising 37,654 phishing contracts deployed between December 29, 2022 and January
1, 2025. Based on the above dataset, we collect phishing transactions and then conduct the measurement from
the perspectives of victim accounts, phishing contracts, and deployer accounts. Alarmingly, these phishing
contracts have launched 211,319 phishing transactions, leading to $190.7 million in losses for 171,984 victim
accounts. Moreover, we identify a large-scale phishing group deploying 85.7% of all phishing contracts, and it
remains active at present. Our work aims to serve as a valuable reference in combating phishing contracts and
protecting users’ assets.
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1 Introduction

Since the emergence of Decentralized Finance (DeFi), Ethereum has consistently attracted capital
and substantial investments from users. By December 2024, the Total Value Locked (TVL) on
Ethereum had surpassed $76.8 billion, accounting for 57.0% of the overall TVL in the DeFi sector [12].
Unfortunately, alongside the influx of capital, phishing incidents have become increasingly prevalent
and have caused over three billion dollar losses in the cryptocurrency ecosystem [1-7, 58]. Phishing
attacks are already regarded as the most severe threat, prompting both academia and industry to
propose various strategies to counteract them [18, 19, 58, 59].

However, phishing tactics are continuously evolving. In particular, to make phishing attacks
more stealthy, attackers are increasingly moving from Externally Owned Accounts (EOAs) to Contract
Accounts (CAs). In previously studied phishing processes, users are deceived into signing a transac-
tion that authorizes or transfers funds directly to an EOA address [59]. Since legitimate projects
typically deploy an official contract address for user interactions, users can easily recognize a
phishing scam when they are asked to send or approve tokens to an EOA address. To deceive users,
now scammers use smart contracts instead of EOAs in phishing attacks. As can be seen in Fig. 1,
users are induced by scammers to visit fraudulent websites and sign transactions to invoke phishing
contracts (instead of transferring tokens directly to an EOA). After signing these transactions,
users transfer tokens to phishing contracts and receive nothing. According to our measurement
results, scammers have stolen over $190 million from users with phishing contracts, highlighting
the urgent need for effective detections and comprehensive analysis of phishing contracts to raise
community awareness.

Although several studies have proposed to detect phishing scams through transaction analysis [55,
79, 81], a more effective approach is to identify phishing contracts at the time of deployment so
that users are protected before phishing transactions occur. To do so, it requires analysis of the
bytecode of phishing contracts, which imposes several challenges for our study. Challenge#1 arises
intuitively from the lack of a dedicated sample dataset. Specifically, the datasets of prior works are
phishing transactions. By contrast, our sample dataset should consist of phishing contracts and
their bytecode that characterize their key features for detection. Such dedicated datasets are not
available in the literature [55, 57, 59, 66, 79, 81]. Challenge#2 occurs during the collection process
of sample phishing contracts because there are no dedicated labels or definitions for phishing
contracts. Specifically, existing account labels typically categorize contracts as either scams or
non-scams, without distinguishing specific scam types such as phishing, Ponzi schemes, or money
laundering. Therefore, we must manually extract phishing contracts from the reported and labeled
scam contracts. Challenge#3 stems from the closed-source nature of phishing contracts. Without
access to source code, detection must rely entirely on bytecode analysis, which provides significantly
less information. This limitation not only complicates the identification of phishing contracts but
also makes automated detection across a large volume of contracts considerably difficult.

Our work. In this paper, we present the first systematic study of phishing contracts on Ethereum.
To address Challenge#1, we propose to build a sample dataset of phishing contracts from reported
attacks and publicly acknowledged labels. To address Challenge#2, we manually extract the phishing
contracts based on the report details, associated transactions, and reversed source code. As a result,
we collect 790 phishing contracts as the sample dataset and analyze their phishing functions,
highlighting their key features for detection (§4). To address Challenge#3, for a smart contract, we
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Fig. 1. A Scam Scenario Involving a Phishing Contract

first extract suspicious functions from its bytecode, then simulate the transactions, finally judge
whether it is a phishing contract based on the simulation result (§5). In this way, we have compiled
a comprehensive dataset, including 37,654 phishing contracts deployed between December 29,
2022 and January 1, 2025.

However, relying solely on contract data is insufficient for comprehensive measurement, as it
requires the collection of related phishing transactions. To this end, for each transaction of the
phishing contracts, we examine the invoked function selector to determine whether it is a phishing
transaction (§6.1). For confirmed phishing transactions, we analyze the fund flow, identify victim
accounts, and calculate the value of stolen tokens. As a result, we have identified 211,319 phishing
transactions occurring between December 29, 2022 and January 8, 2025. Through these transactions,
scammers earned $190.7 million from 171,984 victim accounts.

Next, based on the dataset, we perform a comprehensive analysis of phishing contracts from the
perspectives of victim accounts (§6.2), phishing contracts (§6.3), and contract deployer accounts
(§6.4). Specifically, 89.9% of victim account losses are below $1,000. Many user accounts fail to
revoke permissions or repeatedly sign phishing transactions, causing them to fall for phishing
schemes multiple times. 96.2% of phishing contracts has lifecycles shorter than one day. When
analyzing these short-lifecycle phishing contracts, we find that scammers deploy phishing contracts
daily or even use a single contract for one phishing attack to evade contract labeling security
mechanisms. 85.6% of phishing contract deployment funds can be traced to specific entities, such
as CEXs, mixers, cross-chain bridges, and victim accounts. Notably, 63.2% of them originate from
victim accounts. What’s more, we identify a large-scale phishing group that has deployed 85.7% of
all phishing contracts, which remains active at the time of writing. To safeguard users, we have
reported our findings to Etherscan and the relevant security teams.

Contributions. We summarize our contributions as follows.

e Anatomy of phishing contracts on Ethereum. We manually build a sample dataset of phishing
contracts on Ethereum and analyze the critical features of their phishing functions. This analysis
serves as a foundation for the detection of phishing contracts.

o First large-scale dataset. We develop an automatic phishing contract detection system and
build the first large-scale dataset of phishing contracts on Ethereum, which is 47 times larger
than the sample dataset. We make efforts to ensure the accuracy and integrity of the dataset and
share it with the research community. !

e First in-depth study of phishing contracts. We collect phishing transactions and conduct the
measurement study from the perspectives of victim accounts, phishing contracts, and deployer
accounts. We analyze scammers’ strategies for evading contract labeling mechanisms and discover
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a large-scale phishing group. Our study can serve as a valuable reference for Ethereum service
providers to combat phishing contracts.

2 Background
2.1 Ethereum

Ethereum is a decentralized blockchain platform empowering developers to deploy decentralized
applications. Ethereum accounts are categorized into Externally Owned Accounts (EOAs) and
Contract Accounts (CAs).

EOAs. EOAs are managed through private keys, allowing them to initiate transactions, send ETH,
transfer tokens, and interact with smart contracts. Unlike smart contracts, they do not contain any
on-chain code. Additionally, EOAs must pay gas fees in ETH when executing transactions.

CAs. CAs operate based on bytecode stored on the blockchain. They cannot send transactions on
their own and can only execute functions when called by an EOA or another contract.

Transactions. In Ethereum, transactions serve as signed messages utilized for token transfers,
invoking functions within smart contracts, or deploying smart contracts.

Tokens. Ethereum utilizes Ether (ETH) as its native token to facilitate transactions and cover
computational costs. Additionally, it allows developers to create and distribute tokens via smart
contracts. The smart contract code records the relationship between accounts and tokens. These
tokens can be categorized into fungible and non-fungible tokens (NFTs). Each fungible token is
identical to others, whereas each NFT is unique. Most of the fungible token contracts adhere to the
ERC-20 interface [14], like USDT and USDC, commonly referred to as ERC20 tokens.

2.2 Invoking Smart Contracts on Ethereum

Developers typically write smart contracts using high-level languages such as Solidity [20] or
Vyper [25], which are then compiled into Ethereum Virtual Machine (EVM) bytecode. To deploy a
contract, developers launch a transaction containing the bytecode and any necessary constructor
arguments. Besides, deploying a contract requires a gas fee, which is directly influenced by the
length of the bytecode. Once a contract is deployed on Ethereum, only its bytecode is publicly
available. The source code is accessible to others only if the deployer actively uploads it.

Wallet user interface. Users commonly use digital wallets to manage the private keys of their
accounts and launch transactions. When interacting with a Decentralized Application, users first
visit the associated front-end websites. Following this, they connect wallets and sign transactions
to invoke the official contracts. Before users sign transactions, the wallet analyzes the invoked
function name in the transaction window. Scammers leverage this to deceive users into signing
phishing transactions.

Invoking process. For a transaction invoking a smart contract, its calldata consists of a function
selector and arguments. The function selector is the first four bytes of the Keccak-256 hash of the
function signature. And the arguments are encoded in the formats of Contract ABI Specification [10].
The compiled bytecode of the contract initiates at a dispatcher. Specifically, the dispatcher extracts
the function selector from the calldata and directs the execution flow to the corresponding function
if the selector matches any of the public functions in the contract. In the absence of matched
functions, the dispatcher redirects to the fallback function if defined. If neither matched functions
nor a fallback function is found, the transaction will revert. The gas fee for invoking a smart contract
is determined by the opcodes executed during the transaction. Each executed opcode contributes
to an increase in the overall gas fee.
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Payable functions. In Ethereum, a payable function is a unique type of function within a smart
contract designed to accept ETH during its execution. When a function is declared as payable, it can
receive Ether from external accounts or other contracts. Conversely, if a function is not declared as
payable, it cannot accept any Ether sent to it.

2.3 Transaction-based Phishing on Ethereum

In this paper, we focus on transaction-based phishing. Specifically, scammers lure victims to interact
with phishing websites, prompting them to sign messages or transactions that allow scammers to
withdraw their tokens to phishing accounts. As can be seen from Figure 1, a successful transaction-
based phishing operation typically consists of three stages.

(1) Scammers promote phishing websites. Scammers typically spread fraudulent websites
through social platforms such as Twitter, Telegram, Instagram, or Discord. They may also
embed malicious advertisements directing users to phishing websites on search engines like
Google. To maximize their reach, scammers often impersonate reputable projects or directly
compromise their official accounts, leveraging their established reputation for promotion.

(2) Victims visit phishing websites and connect wallets. Enticed by words like "AIRDROP",
victims often visit phishing websites without much deliberation. Many of these fraudulent
websites are created using website cloning tools, making them nearly indistinguishable from
legitimate ones. Consequently, victims are quick to connect their wallets.

(3) Victims sign phishing transaction. Once the victim’s wallet address is captured, the
phishing website’s frontend program scans for valuable tokens. It then generates a phishing
transaction or message designed to steal the victim’s most valuable assets. Due to the website’s
convincing disguise, the victim fails to recognize its fraudulent nature and unknowingly
signs the phishing transaction or message. Consequently, the victim’s tokens are transferred
to the scammer’s accounts.

While He et al. [59] presents a method for identifying transaction-based phishing scams on Ethereum,
it’s limited to cases where phishing accounts are Externally Owned Accounts (EOAs). In contrast,
our research focuses on cases where phishing accounts are contracts, which present greater sophis-
tication and detection challenges.

3 Study Design

In this work, we seek to address the following research questions (RQs) to gain a comprehensive
understanding of phishing contracts on Ethereum:

RQ1: What are the common features of phishing contracts? Despite the significant cryp-
tocurrency losses caused by phishing contracts, the community still lacks an in-depth un-
derstanding of this emerging phishing tactic, due to insufficient insights into the operation
and characteristics. Furthermore, even as exploits caused by phishing contracts continue to
rise, the community has yet to explicitly label such contracts. Instead, they are often broadly
categorized under the generic label of “scam". As a result, to thoroughly expose this attack
pattern, we must first accurately label phishing contracts from existing reports, and uncover
their common characteristics.

RQ2: Can we build a large-scale dataset of phishing contracts with only bytecode acces-
sible? The reported phishing contracts are merely the tip of the iceberg, while unmarked
phishing contracts will continue to exacerbate threats to the ecosystem. Even more concern-
ing is that if phishing contracts cannot be identified before they steal assets, more of them
will be deployed in the future, causing further financial losses. Besides, a large-scale dataset
is essential for conducting effective measurement and analysis of phishing contract attacks.
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Fig. 2. An Overview of Our Work

Furthermore, many scammers deliberately avoid uploading the source code of phishing con-
tracts to obscure their malicious activities. Consequently, it becomes imperative to develop
methods for identifying phishing contracts directly from their bytecode.

RQ3: What are the harmful effects and implications introduced by phishing contracts?
Leveraging the large-scale dataset, we aim to measure the impacts of phishing contracts across
multiple dimensions, pertaining to attack transaction scale, stolen funds, as well as victims
and attackers. Therefore, it is necessary to investigate: RQ3.1) What is the volume of attack
transactions, and how many victims fall prey to phishing contract attacks? Answering these
questions will provide insight into the overall scale of this emerging phishing strategy. RQ3.2)
What is the distribution of victim losses, and what are the on-chain behaviors of victims before
signing phishing transactions? This will help highlight the losses for each victim account and
identify the types of users most vulnerable to these scams. RQ3.3) How much profit does each
phishing contract generate from these attacks? How long is each one active? Analyzing the profit
and lifecycle of each contract offers a clear and intuitive insight into the profit distribution
and behavioral patterns of phishing contracts. And RQ3.4) How many accounts deploy these
phishing contracts? What are the sources of deployment funds? Are there any connections among
the primary phishing contract deployers? Figuring out the key characteristics of deployer
accounts can help us discover the primary phishing groups that are consistently deploying
different phishing contracts.

Fig. 2 shows the workflow of our study. We begin by constructing a ground truth dataset from
the community reports, comprising 790 phishing contracts. Using this dataset, we analyze the key
features of phishing functions within these contracts. Then, based on these features, we develop
a system to identify phishing contracts that have been deployed but remain unlabeled in the wild.
Our tool successfully identifies 37,654 phishing contracts, which have been manually verified and
reported to Etherscan and the relevant security teams. Finally, we gather phishing transactions
and deployment transactions associated with these phishing contracts. Utilizing these datasets, we
perform an in-depth analysis of phishing contract attacks, focusing on victim accounts, phishing
contracts, and deployer accounts.

4 Building Sample Dataset of Phishing Contracts

In this section, we build a sample dataset of phishing contracts, which is crucial for gaining an initial
understanding of phishing contracts and defining the decision boundaries for their identification.
Solution to Challenge#1: We first collect exposed scam contracts and transactions from reported
attacks and publicly acknowledged labels. Solution to Challenge#2: From the exposed scam
contracts, we manually extract the phishing contracts according to the report details, associated
transactions, and reversed source code. Based on the extracted sample dataset, we characterize
them and provide clear definitions for identifying a phishing contract. These efforts can serve as a
foundation for collecting phishing contracts on a large scale.
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Fig. 3. The Scam Process Involving Phishing Contracts. For victims possessing ETH, they will be lured to
invoke the payable phishing function, like Claim in Listing 1. For victims owning ERC20 tokens or NFTs, they
will be induced to grant the scammer control over their tokens, via off-chain signatures or transactions. Then
the multicall function in the phishing contract will be invoked to transfer victims’ tokens.

Table 1. Analysis of Phishing Functions and Contracts in the Sample Dataset.

Function Type “Empty" payable function Multicall function
Steal Targets ETH ERC20 tokens & NFTs
Enticing Name
Suspicious Features Short Length Only specific phishing accounts can invoke
Lacking necessary on-chain operations
Function Number 626 524

4.1 Collecting Exposed Scam Contracts & Transactions

In this section, we collect sample phishing contracts from reported attacks on Chainabuse [9], a
prominent platform for reporting malicious crypto activities, and account labels on Etherscan [16],
the leading Ethereum blockchain explorer. Since users often use the generic label “scam” to report
some malicious contracts on Ethereum, including fake tokens, phishing, and other types of scams,
there lack specific labels for phishing contracts. Hence, we first collect scam contracts and then
extract phishing contracts from them. We carried out the dataset collection of scam contracts
between December 5, 2024, and December 8, 2024. In statistics, there are 13,327 labeled and reported
scam contracts deployed after January 1, 2023. From this dataset, we identify phishing contracts
based on the report details, transactions.

4.2 Extracting Phishing Contracts From Exposed Scam Contracts

Although we have collected numerous scam contracts in the previous section, many of them share
identical codes. In fact, there are 4,521 distinct scam contracts among them. Therefore, we only
need to verify these distinct scam contracts individually. For each scam contract, we examine the
report details to check whether it mentions phishing contract attacks. Additionally, we review the
transaction details to identify any phishing transactions. Specifically, if the contract is invoked to
transfer victims’ tokens without returning anything, we classify it as a phishing contract. Among all
scam contracts in the dataset, there are 9,818 fake token contracts, 2,608 contracts that disseminate
fake tokens, and 790 phishing contracts. The remaining 111 contracts engage in activities such as
money laundering and honeypot, distinct from phishing. Hence, the 790 phishing contracts are
regarded as our initial ground truth and form the sample dataset.
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contract ClaimRewards {
address private phishing_account;
constructor () public{ phishing_account=0x3eb2xxxxc218; }
function Claim() public payable {} // function to steal ETH.
struct CallData {
address contract;
bytes Bytes;
3
function multicall(CallDatal[] calls) public {
require(phishing_account == msg.sender);
// ensure that only another phishing account can invoke.
for(uint i = @; i < calls.length; i++) {
calls[i].contract.call(calls[i].Bytes);

3
} // function to steal ERC20 tokens & NFTs.

3

Listing 1. Example of a Phishing Contract. We simplify its source code to highlight the key components. The
Claim function is designed to steal ETH. The multicall function is implemented to steal ERC20 tokens & NFTs.

4.3 Key features: “empty"” payable functions and multicall functions

For each phishing contract in the sample dataset, we collect their phishing functions that are invoked
to steal tokens from victims’ accounts. To this end, we first analyze their phishing transactions and
extract the corresponding phishing functions. Additionally, we analyze its source code or decompile
the bytecode using Dedaub [11] to explore the detailed implementation of these phishing functions.
In total, we collect 1,150 phishing functions. Next, we classify these phishing functions based on
their implementation methods and the types of assets they target. Our analysis reveals that phishing
functions typically fall into two main categories: an ‘empty” payable function to steal ETH and
a multicall function to steal ERC20 tokens & NFTs. Furthermore, Table 1 highlights suspicious
characteristics that distinguish phishing functions from those found in legitimate contracts. The
scam process involving phishing contracts is depicted in Fig. 3.

“Empty" payable functions to steal ETH. For victims possessing ETH, scammers design enticing
“empty" payable functions to pilfer ETH. When a contract function is declared payable, users can
transfer ETH to the contract while invoking that function. If the function is not payable and users
attempt to transfer ETH during invocation, the transaction will revert. Consider the function Claim
in Listing 1 as an example; despite its name suggesting a reward claim, this function lacks any
implementation. For some phishing contracts, this function may include one meaningless operation,
like updating a local variable. However, from the user’s perspective, invoking this function merely
withdraws users’ ETH without returning anything. So we refer to this category of phishing function
as an “empty" payable function.

To gain a more thorough insight into these “empty" payable functions, we collect 50 legitimate
payable functions from official contracts for comparison. These functions also have enticing
names like claim and mint. Invoking these official functions requires users to transfer ETH to the
contracts. However, upon invocation, they return tokens to users, accompanied by the generation
of corresponding on-chain event logs. Since the operations to return tokens or generate on-chain
event logs incur significant gas fees, designing phishing functions to be either ’empty’ or comprised
of a single trivial operation can minimize costs. As a result, they neither return tokens to users nor
generate any on-chain event logs. This characteristic can be utilized for detection purposes.
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Multicall function to steal ERC20 tokens & NFTs. Phishing transactions stealing ERC20
tokens & NFTs can be complex. For instance, phishing websites can trick victims into granting
scammers control over their tokens by initiating an approval transaction. Then scammers launch
transactions to transfer their tokens. In NFT phishing scenarios, phishing websites may ask victims
to sign a zero-dollar purchase order [26]. With this signed order, scammers can interact with NFT
marketplace contracts to transfer victims’ NFTs at no expense. In summary, different phishing
schemes require different types of phishing transactions. As a result, they leverage multicall function,
as demonstrated in Listing 1, to launch specific phishing transactions according to the phishing
schemes. Typically, the multicall function takes an array of encoded function calls as input. Each
item in the array contains a target contract address, function signature, and parameters. This allows
it to batch-execute multiple contract calls within a single transaction based on provided parameters.

In Listing 1, the multicall function is similar to that in official contracts, such as Uniswap V3:
multicall 2 except caller check [22, 23]. For comparison, we collect 20 official multicall contracts from
well-known legitimate projects and manually inspect their source codes. We discover that in official
contracts, the multicall function can be invoked by any account and serves as an auxiliary function
for batch-invoking multiple contracts. In contrast, the multicall function in phishing contracts
can only be invoked by certain phishing accounts. This check is necessary because without caller
verification, after victims authorize their tokens to the multicall phishing contract via approval
transactions, anyone can invoke it to transfer the victim’s tokens. This feature can be leveraged for
detection.

In summary, the sample dataset contains 1,150 phishing functions. 54.4% of them (626) are
“empty" payable functions and 45.6% of them (524) are multicall functions, as can be seen from
Table 1.

Answer to RQ1: Phishing contracts generally include two types of phishing functions. The
first type is “empty" payable functions with enticing names, used to steal ETH. The second
type is multicall functions, which can only be invoked by specific phishing accounts, designed
to steal ERC20 tokens and NFTs. These characteristics can serve as a foundation for the
following large-scale collection of phishing contracts in the wild.

5 Collecting Phishing Contracts in the Wild

In Section 1, we highlight that the primary challenge in identifying phishing contracts stems from
the reliance on bytecode. Based on the two patterns ie., “empty” payable functions stealing ETH and
multicall functions stealing ERC20 tokens & NFTs, summarized in Section 4, we strive to identify
all in-the-wild phishing contracts.

Solution to Challenge#3: Algorithm 1 describes the procedure to identify phishing contracts. For
phishing targeting ETH, we begin by detecting payable functions with suspicious names from the
bytecode. Next, we simulate transactions to determine whether any on-chain events are triggered.
If no on-chain events are observed, the contract is classified as a phishing contract. For phishing
schemes targeting ERC20 tokens and NFTs, we detect multicall functions by analyzing their calldata
loading operations. Through transaction simulation, we evaluate whether these functions can only
be executed by specific phishing accounts. If this condition is met, the contract is also categorized
as a phishing contract.

To automate this process and scale it to a large set of contracts, our detection system operates
as follows: (1) collecting all on-chain contract data; (2) identifying suspicious functions within
the bytecode; (3) simulating transactions to invoke the identified functions; and (4) determining
phishing contracts based on the simulation results. Finally, we validate efficiency of our tool and
the accuracy of the detection results.
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Algorithm 1 Phishing Contract Detection Algorithm

Require: Contract bytecode 8
Ensure: Contract type 7
1: Initialize empty_payable_phishing < False > Flag for empty payable phishing function
Initialize multicall_phishing < False > Flag for multicall phishing function
Initialize 7~ « legitimate_contract > Default contract type
for each function f in 8 do
if f is a suspicious payable function and invoking f generates no on-chain events then
empty_payable_phishing < True > Mark as empty payable phishing
end if
if f is a multicall function and f is invoked only by phishing accounts then
multicall_phishing < True > Mark as multicall phishing
end if
: end for
if empty_payable_phishing A —multicall_phishing then
T « empty_payable_phishing_contract
else if —empty_payable_phishing A multicall_phishing then
T <« multicall_phishing_contract
else if empty_payable_phishing A multicall_phishing then
T — empty_payable&&multicall_phishing_contract
end if
return 7

R A U R i 24

e e e e T = T S ST Y
O 0 N N R W N = O

5.1 Gathering Ethereum Contracts

We have deployed a local Ethereum node [21] to gather all contracts deployed between December
29, 2022 and January 1, 2025. During this period, we collect a total of 13,215,401 contracts. For each
contract, we record its bytecode, deployer account, and deploy timestamp.

5.2 ldentifying Suspicious Functions

In this part, we aim to analyze contract bytecode, then identify suspicious payable functions and
multicall functions, which could potentially become phishing functions.

Identify suspicious payable functions via selectors. In Section 2.2, we mention that the function
selector is the first four bytes of the Keccak-256 hash of the function signature. The dispatcher
within the bytecode matches the function selector with its corresponding function and redirects to the
fallback functions if no match is found. In the absence of matched functions or a fallback function, the
transaction will revert. When invoking a smart contract, the digital wallet will extract the function
selector from the calldata. It then checks the Ethereum Signature Database [15], a public database
that maps function selectors to their corresponding method names. If the method name is located,
it will display method names on the confirmation screen [13]. If the method name is not found, the
wallet will display the hexadecimal function selector instead. To lure users with enticing method
names, scammers must initially register the method names in the database.

To determine whether a function is payable on the bytecode level, we investigate the implemen-
tation of compilers [20, 25]. We discover that, for a non-payable function, the compiler will add a
callvalue check in the bytecode after matching the selector. Specifically, it retrieves the callvalue
via the CALLVALUE opcode. If the value is non-zero, the transaction will revert.
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To identify suspicious payable functions, we first extract the function selectors from the dispatcher
in the bytecode. To judge if a function is payable, we inspect whether a call value check exists in its
implementation. Then we search Ethereum Signature Database to determine whether the method
names are registered. As discussed in Section 4.3, scammers must register the method name, allowing
users to see it when invoking contract functions. To lure users into signing transactions, scammers
often use deceptive keywords such as “claim" or “reward". Hence, if the selector is registered in
the Ethereum Signature Database and method name contains or is similar to a suspicious keyword,
we label it as suspicious. Additionally, we employ edit distance to represent the similarity ratio
using the Levenshtein.ratio function, considering any ratio above 0.8 as indicative of similarity.
From the sample dataset collected in Section 2, we identify 54 suspicious payable function selectors.
Subsequently, we extract 12 suspicious keywords from these sources for detection. Additionally, we
incorporate 23 suspicious keywords identified in existing studies [58, 59, 80]. In total, we identify 35
suspicious keywords for detection, which will be included in our open-source dataset. For simplicity,
we directly identify 104,315 registered functions from the Ethereum Signature Database whose
names contain or are similar to these suspicious keywords. If payable functions with these names
are found in the bytecode, we extract them and proceed to the next step.

Identify multicall functions via bytecode operations. Currently, for multicall functions, there
are two types of parameters: (address,bytes)[] and (address[],bytes[]). Inspired by SigRec [56], we
can deduce the function parameter types via the EVM bytecode operations to load calldata. For
example, if the parameter type is (address,bytes)[], the EVM bytecode will first load the array length
using CALLDATALOAD, then load the address with CALLDATALOAD, and finally load the bytes with
CALLDATACOPY. Thus, by recording the sequences and parameters of EVM bytecode operations
used to load calldata, we can determine the function’s parameter types. For an unknown function,
we invoke it with parameters in the form of (address,bytes)[] or (address[],bytes[]). If we observe
operations loading addresses and bytes accordingly, we classify the function as a multicall function.

5.3 Simulating Transactions

After identifying suspicious functions, we will generate transaction parameters, according to the
function selectors identified in Section 5.2, automatically. For suspicious payable functions, we
randomly set the value of the transaction to send ETH. For multicall functions, we envision a
phishing scenario. Here, we first approve our USDT tokens to the contract, then invoke the multicall
function to transfer the tokens. Then we simulate the transactions with a local geth node deployed
by us. Since the simulated transactions won’t be recorded on-chain, there is no risk of token loss.
We will record the transaction results, including account balance changes, emitted events, and
internal transactions. Finally we will analyze these results to detect phishing contracts.

Alter transaction parameters based on revert information. Since scammers cannot predict
victims’ account addresses when stealing ETH, they do not verify a specific victim’s account in
these phishing attacks. Therefore, we can trigger the ETH phishing function using a random
address. Yet, for the multicall phishing function, it will revert if the caller check fails to pass. In the
EVM bytecode, it employs the “EQ" and “SUB” operations to compare the caller’s address with the
phishing account address. For this case, we utilize the “debug_traceCall" API offered by the geth
node to obtain operations and their parameters. Specifically, we can retrieve the account address
from the parameters of the “EQ" operation. Then we will modify the transaction parameters to
pass the caller check.
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5.4 Determining Phishing Contracts

In this part, we detect phishing contracts with the simulation results. Specifically, we use suspicious
key features outlined in Table 1 for detection. For suspicious payable functions, if the transaction
just receives caller’s ETH without any return or other on-chain events, we identify them as phishing
functions. For multicall functions, if only accounts flagged as phishing by Etherscan can invoke
them and transfer victims’ tokens, we categorize them as phishing functions.

5.5 Evaluating the Detection System

Small-scale Verification. To ensure the coverage and effectiveness of our detection system, we
build a dataset consisting of phishing contracts and legitimate contracts for evaluation. The phishing
contract dataset is the sample dataset collected in Section 4. For the benign contract dataset, we
collect 400 top token contracts and 400 Decentralized Exchanges (DEXs) official contracts from
Etherscan. Our system successfully detects all phishing contracts in the sample dataset without
mistakenly identifying official contracts as phishing. In other words, our system produces neither
false positives nor false negatives in the small-scale verification experiment.

Large-scale Dataset Collection. Between December 29, 2022 and January 1, 2025, we identified
37,654 phishing contracts in the wild, with 1,450 unique contract hashes. In total, we identified 4,601
suspicious payable functions that steal ETH. Among the 35 suspicious keywords, the top ten most
frequently appearing keywords are: claim, securityupdate, connect, swap, mint, confirm, verify,
withdraw, gift, and airdrop. The frequency distribution of their occurrences is as follows: 42.7%,
13.5%, 8.6%, 6.1%, 5.0%, 4.2%, 3.3%, 3.1%, 2.3%, 2.3%, respectively. These contracts constitute our
large-scale dataset for the subsequent measurement analysis. To ensure the dataset’s reliability, we
implemented a thorough validation process. A team of three experienced security analysts, all with
extensive expertise in phishing detection on Ethereum, was assembled to verify the detection results.
For contracts sharing the same bytecode, we perform the check only once. Each unique phishing
contract was randomly assigned to two analysts for manual validation, ensuring an independent
and accurate review.

For each contract, we verified the presence of associated phishing transactions and confirmed
whether related phishing functions were successfully identified by our system. For contracts without
any phishing transactions, we manually reviewed their source code. If their source code were closed-
source, we employed Dedaub [11] to reverse-engineer it. Next, we attempted to simulate phishing
transactions. If the phishing transactions were successfully simulated, we classified the contract
as a phishing contract. In summary, among the 1,450 unique contracts with distinct bytecodes,
895 have associated phishing transactions, while 555 lack transactions. Of the contracts without
transactions, 199 are open-source smart contracts, and 356 are closed-source. Through this rigorous
validation process, we did not identify any false positives generated by our system.

Answer to RQ2: We can collect phishing contracts by identifying suspicious functions,
simulating transactions, and analyzing simulation results. Phishing contracts are prevalent
in the ecosystem. Specifically, we have built a large-scale dataset including 37,654 phishing
contracts deployed between December 29, 2022 and January 1, 2025, which is 47 times larger
than the sample dataset collected from the community.

6 Investigating Phishing Contracts

With the validated large-scale phishing contracts, we’re looking to peek into this snake pit, figuring
out the characteristics of such special contracts. However, relying solely on the contract data
does not provide enough basis to delve into these topics; it is required to collect related phishing
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Fig. 4. Distribution of Victim Account Losses and Lost Token Types

transactions. In this section, we first identify phishing transactions invoking the collected contracts.
Finally, we conduct measurements from the perspectives of victims, phishing contracts, and contract
deployment patterns.

6.1 Collecting Phishing Transactions

Not all transactions invoking a phishing contract are malicious phishing transactions, e.g., scammers
can invoke the contract to transfer stolen funds to another address or set ownership of phishing
contracts. For instance, phishing contract 0xa9eb was invoked in transaction Oxaa4b to withdraw
tokens to phishing account 0xa9eb [50]. The phishing contract 0x66dc was invoked in transaction
0x59¢3, allowing phishing account 0x8d79 to invoke it [49]. Therefore, it is required to identify
transactions used to execute phishing activity. As a follow-up to the previous analysis of contract
bytecodes in Section 4.3, transactions calling only the “empty” payable functions and multicall
functions should be considered phishing transactions, and we use function selectors to filter them.

Calculating lost token values. For each collected phishing transaction, we analyze fund flows,
identify the victim account, and calculate the value of lost tokens. For ETH and ERC20 tokens, we
retrieve token values using CoinGecko [52], the largest independent cryptocurrency data aggregator.
For NFTs, we examine their sales history on marketplaces via Alchemy [8], selecting the price from
the sale transaction closest in time to the phishing transaction as the token’s value.

Phishing Transaction Scale. Between December 29, 2022 and January 8, 2025, we have collected
211,319 phishing transactions for phishing contracts detected in Section 5. There are 148,582
transactions stealing ETH, 57,630 transactions stealing ERC20 tokens, and 5,107 transactions
stealing NFTs. These 37,654 phishing contracts earned $190.7 million from 171,984 victim accounts.
During this period, over 200 phishing transactions occur daily, bringing huge losses for Web3 users.
On January 23, 2024, we observed a loss of $3.8M from 1,199 phishing transactions, representing
the highest loss amount in a single day within our dataset.

Answer to RQ3.1: Phishing contracts have caused significant losses to users. Between
December 29, 2022 and January 8, 2025, we have collected 148,582 phishing transactions,
impacting 171,984 victims and resulting in total losses of $190.7 million.

6.2 Victim Account Analysis

In this section, we provide a comprehensive analysis of victim accounts targeted by phishing
contracts. We analyze the total lost values for each type of tokens and the distribution of losses for
each victim account. Besides, we explore the reasons why many users fall for phishing schemes
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multiple times. Finally, we analyze victims’ on-chain behavior before signing phishing transactions
to identify their behavioral patterns.

Distribution of victim losses across different tokens. Fig. 4a shows the distribution of user
losses across different token types. ETH accounts for 22.6% of the total losses, ERC20 tokens dominate
with 71.5%, and NFTs contribute 5.9%. In total, we discover 3,285 types of lost ERC20 tokens, with the
top three being stETH ($15.5 million), USDC ($9.6 million), and USDT ($5.3 million). Additionally,
there are 1,425 types of lost NFTs, with the most valuable being BAYC #606, valued at $0.5 million. 2

Distribution of victim account losses. We track the losses of each victim account. While
the total losses from phishing contracts are significant, the majority of victim accounts have
suffered relatively small individual losses. As shown in Fig. 4b, 68.9% of victim accounts experienced
losses under $100. This is due to the fact that most accounts hold only a small amount of tokens.
Furthermore, only 10.1% of victim accounts faced losses exceeding $1,000. Also, there exist several
cases where victim account losses are huge. For instance, on 2024-01-27, the account 0xc9f3 was
defrauded of tokens worth $2.3 million [43]. The victim first authorized SuperVerse tokens in
the account to a multicall phishing contract. The scammer then swiftly invoked the phishing
contract to withdraw these tokens. The interval between the victim’s approval transaction and the
scammer’s withdrawal transaction was merely 12 seconds, highlighting the scammer’s efficiency.
Additionally, we observed that the victim later signed five more phishing transactions, sending
ETH and approving four other tokens to phishing contracts.

Loss occurrences per victim. When analyzing the frequency of losses for each victim, we find that
26,226 victim accounts have experienced losses more than once. Among them, 10.1% accounts failed to
revoke permissions in a timely manner. For instance, the victim account @x285c¢ granted approval for
its Prime tokens to a multicall phishing contract on November 20, 2023 [51], allowing the tokens
to be quickly withdrawn. Despite this, the victim did not revoke the approval. On November 24,
2023, they acquired new Prime tokens via Uniswap, and them these tokens were withdrawn again.
Besides, 94.6% of these victims signed multiple phishing transactions and lost over once, similar to
the example mentioned above.

On-chain behavior of victims before phishing. To analyze the on-chain behavior of victim
accounts before they signed phishing transactions, we collected data on their transaction counts
over the six months preceding these incidents. Our analysis revealed that 75.6% of the accounts had
fewer than 20 transactions during this period. For example, the account 0x4a4e received 0.02 ETH
from Remitano, a well-known cryptocurrency exchange [53]. Subsequently, it invoked an "empty"
payable function and transferred ETH to a phishing contract. Prior to this phishing transaction, the
account had only a single transaction, which involved receiving tokens from the exchange. This
suggests that the victim was likely an inexperienced Web3 user, making them more susceptible
to scams. For comparison, we identified 372 Binance user accounts from transactions involving
a well-known Binance deposit address between January 12, 2025, and January 14, 2025 [28]. We
analyzed their transaction activity over the previous six months and found that, on average, these
accounts conducted 252 transactions during that time. It highlights that most phishing victims had
minimal on-chain activity, indicating a lack of experience in Web3 environments.

Answer to RQ3.2: 89.9% of victim losses are under $1,000. Many users fall for phishing
schemes multiple times, due to failing to revoke permissions or signing multiple phishing
transactions. Those with less Web3 experience are particularly vulnerable to phishing attacks.

20x773c5ea5fb02e6b735£7a05d407fd1335aa2b4bc46914676cbb2135ec1a6fda7

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 32. Publication date: June 2025.



Phishing Tactics Are Evolving: An Empirical Study of Phishing Contracts on Ethereum 32:15

[ only “empty" payable functions [ less than $1,000

[ only multicall functions

X both

O] between $1,000 and $5,000

D more than $1,000

(a) Distribution of Phishing Contract Types (b) Distribution of Phishing Contract Profits

Fig. 5. Distribution of Phishing Contract Types and Profits

6.3 Phishing Contract Analysis

In this section, we analyze the profit and lifespan of each phishing contract to identify the most
active phishing contracts and their behavioral patterns. Additionally, we reveal their approaches to
evading contract labeling mechanisms. Furthermore, we find that they leverage the “delegatecall”
function to minimize phishing contract deployment costs.

Distribution of phishing contract types. In Section 5, we note that phishing contracts can be
categorized into three types: those with only “empty" payable functions, those with only multicall
functions, and those with both. As shown in Fig. 5a, the majority of phishing contracts in our
dataset have both types of phishing functions. Additionally, many phishing contracts share identical
bytecode. For instance, the largest phishing contract group comprises 16,304 contracts that are
identical to phishing contract 0x0001 [42]. All these contracts were deployed by a single phishing
account [32]. Similarly, the second-largest group comprises 4,756 contracts identical to phishing
contract 0x0005 [44], also deployed by a single phishing account [40]. In total, we identified seven
phishing contract groups, each containing over 1,000 identical phishing contracts.

Distribution of phishing contract profits. We analyze the profits of phishing contracts, as
illustrated in Fig. 5b. While the overall profit is significant, the majority of phishing contracts yield
relatively modest earnings. Specifically, 70.9% of phishing contracts generate profits below $1,000,
whereas only 9.3% earn over $5,000. Notably, the contract 0x0000 emerges as the most profitable
phishing contract in our dataset, amassing $3.9 million in earnings [31]. This contract executed
12,478 phishing transactions, targeting 11,689 victim accounts to steal ETH.

Lifespan of Phishing Contracts. To study the active timeline of phishing contracts, we collect
data on their first and last phishing transactions. We define the interval between these transactions
as their lifespan. Among all phishing contracts, only 1.9% has remained active for more than a month.
For example, the contract @xacbd remained active for 575 days, with its first phishing transaction
on April 7, 2023, and its last on November 3, 2024. During this period, it stole approximately $0.3
million from 1,095 victim accounts [45]. In contrast, 96.2% phishing contracts have a lifespan of less
than a day.

This difference can be attributed to the contract labeling mechanism. In this mechanism, security
researchers report phishing accounts and their associated transactions to Etherscan and wallet
providers. Etherscan then labels these phishing accounts, and wallets block transactions to them.
Specifically, before displaying the transaction window, wallets check if the target address is black-
listed. If it is, an alert window appears, preventing users from signing the transaction. Therefore,
once a contract is labeled as phishing, it becomes difficult for it to deceive users and steal tokens.
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Fig. 6. An Example of Delegatecall in Phishing Contracts. Users first approve tokens to the proxy phishing
contracts. Scammers then invoke the proxy contracts, which utilize delegatecall to execute the code in the
logical phishing contracts.

As of the time of writing this paper, the contract @xacbd [45] has not yet been labeled, which helps
explain why it has remained active for such a long period.

Attempts to combat contract labeling mechanism. Generally, there is a delay between the
deployment time of phishing contracts and the time they are labeled. As a result, scammers can
evade this mechanism by deploying new phishing contracts frequently. For example, Pink Drainer [17],
a large-scale phishing group that has now disappeared, deployed a new phishing contract each day
from Mar 18, 2024, to May 16, 2024 [41]. We have identified all 61 of these phishing contracts in
our database.

Moreover, we have identified many phishing contracts that are used for only a single phishing
transaction. For instance, phishing contract 0x60cf was deployed on November 13, 2024, and
quickly stole tokens from victim account @xd98d [47], but it did not generate any further phishing
transactions. While these contracts can still be used for phishing, many of them share the same
contract bytecode and deployer accounts, with each one typically associated with only a single
phishing transaction. This leads us to conclude that these phishing contracts are intended for
one-time use. Despite the significant costs for scammers to deploy new phishing contracts, this
approach makes it easier to deceive users, as they are constantly faced with new accounts that have
not yet been labeled. We have identified 31,156 instances of these one-time phishing contracts.

Leveraging “delegatecall” to reduce deployment fee. Delegatecall enables a proxy smart
contract to execute code from a logical contract while operating within the storage and context
of the calling contract [74]. It is frequently utilized to facilitate code reuse without duplication
or to implement proxy contracts for upgradeable architectures. And we observe that scammers
utilize delegatecall to reduce deployment fee. Figure 6 illustrates a real-world example of this tactic.
On January 14, 2025, account @xc6ba approved its IQ tokens to a proxy phishing contract 0xfd7a.
Subsequently, the scammer 0x0000 invoked the proxy phishing contract, which used delegatecall
to execute the multicall phishing code from the logical phishing contract, transferring the 1Q
tokens [48]. In our dataset, there are 114 proxy phishing contracts, one logical phishing contract,
and 3,196 related phishing transactions.

Answer to RQ3.3: 86.5% of phishing contracts include both “empty" payable functions and
multicall functions to steal various types of tokens. 70.9% of contract profits are below $1,000.
96.2% of contracts have a lifespan shorter than one day. Scammers deploy phishing contracts
daily or even use a contract for a single phishing attack to evade contract labeling mechanisms.
They also utilize “delegatecall” to minimize the deployment costs of phishing contracts.
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Algorithm 2 Deployment Fund Tracing Algorithm

Require: Deployment transaction 7, Target account A,
Ensure: Tracing results R

: R0 > Initialize results storage
2: Extract deployer account A, and deployment funds amount % from 7~
3: Acurrent — Ag > Start with deployer account
4: Depth « 0 > Initialize tracing depth
5: while True do
6: Trace funds flowing into Acyrrent > Trace Fund Flow
7: if Acyrrent is a CEX, cross-chain, or mixer account or transaction is a phishing transaction
or Depth > 5 then

8 Terminate tracing and store results R
9: Break

10: end if

11: Extract the sender account Ajgepqer that transferred ETH to Acyrrens

12: Acurrent < Asender

13: Depth < Depth + 1
14: end while
return R

6.4 Deployer Account Analysis

In this section, we analyze the distribution of deployer accounts and the deployment fund sources
of phishing contracts. Furthermore, we explore the relationships among major phishing contract
deployers to identify large-scale phishing groups that consistently deploy such contracts.

Overview of deployer accounts. A total of 2,178 accounts deployed 37,654 phishing contracts
in our dataset. We find that certain phishing accounts are responsible for deploying thousands of
phishing contracts. Specifically, nine phishing accounts have deployed over 500 phishing contracts,
totaling 34,312, which accounts for 91.1% of the total. Among them, the phishing account 0x0000 has
deployed 16,322 phishing contracts [32], the highest number among all accounts. It began large-
scale phishing contract deployment on November 2, 2023. Additionally, it uses contract @xed@e to
automate phishing contract deployment [33]. As of this writing, it is still actively invoking contract
0xed@e for each new phishing contract deployment.

Distribution of deployment fund source. To investigate the sources of funds used for deploying
phishing contracts, we present a tracing algorithm outlined in Algorithm 2. The algorithm is
composed of four key steps:

Step1: Extract Information. First, we extract the deployer account and the deployment funds amount
from each contract’s deployment transaction.

Step2: Trace Fund Flow. Next, we trace the funds flowing into the deployer account.

Step3: Evaluate Trace Continuation. We then evaluate whether to terminate the tracing process. If
the sender account is a centralized exchange (CEX), cross-chain, or mixer account, it becomes
difficult to continue tracing, so we terminate the search and store the results. If the transaction
being traced is identified as a phishing transaction, we also terminate the process and label
the sender as a victim account. Additionally, if the tracing depth exceeds five steps, the
process is terminated.

Step4: Repeat or Terminate. If none of the termination conditions are met, we extract the sender
account that transferred ETH to the target account and return to Step 2.
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Table 2. Type of Phishing Contract Fund Source. For a contract, if all of its deployment funds are from the
same entity type, we categorize it as the type that fund originates from the entity.

Type Example Number Proportion
From CEXs 0x5190f328c68af2b3feb8a39e9dda716ed1dd5538 5,524 14.7%
From cross-chain bridges 0xc39993830eebb88a02b2b2b74a695871a61acad2 2,913 7.7%
From mixers 0xd2f586e44c2a6d22c5fc5edch9f25e158bbb9751 18 0.04%
From victims 0x9db1532603662538fa3952801f613e08068457a7 23,782 63.2%
[ J . /
ETH ETH @ ETH @ Deploy §
[ Y- - — —>
User account Phishing contract Phishing account Phishing account Phishing contract
0x2f60 0x613f 0xa763 0xf813 0x9db1

Fig. 7. An Example of Scammers Using Victims’ tokens to Deploy New Phishing Contracts

For a contract, if all of its deployment funds are from the same type of entity, we mark that its
deployment fund originates from the entity. For example, if a contract’s deployment funds come
from a CEX, we mark the contract’s deployment funds as originating from the CEX. We discover
that 85.6% of phishing contract deployment fund can be traced to a specific entity. Among them,
deployment funds of 5,524 phishing contracts come from CEX. Our statistics show that the top
five CEXs funding phishing contract deployments are Binance, SideShift, ChangeNow, Coinbase,
and KuCoin, with proportions of 35.2%, 12.3%, 6.4%, 6.0%, and 3.4%, respectively. By supplying
substantial criminal evidence of phishing contracts and their related fund flows to CEXs, victims can
quickly uncover the true identities of the scammers. Besides, 63.2% of phishing contracts are funded
directly from victim accounts. As can be seen from Fig. 7, scammers use ETH stolen from victims
to deploy new phishing contracts and target new victims. Table 2 highlights example contracts
with deployment funds originating from various entities.

e CEX: Phishing account 0x0000 received ETH from FixedFloat, then deployed the phishing
contract 0x5190.

e Cross-chain bridges: Phishing account @xf672 obtained ETH from Stargate Finance, trans-
ferred it to 0x0000, which then deployed the phishing contract @xc399.

e Mixers: Phishing account @xc@7a received ETH from Tornado.Cash and subsequently de-
ployed the phishing contract @xd2f5.

e Victims: Phishing account 0xa763 received ETH from victim 0x2f60 via phishing contract
0x6f3f, transferred it to another phishing account 0xf813, and then deployed the phishing
contract 0x9db1.

Relationships between major contract deployers. While tracing deployer funds, we observed
fund flow connections between different deployer accounts. For instance, on November 13, 2024, the
second-largest contract deployer transferred 2 ETH to the largest contract deployer [46]. Although
this does not conclusively prove they are operated by the same entity, it indicates a connection
between them. This observation motivates us to cluster the nine largest deployer accounts, each
deploying over 500 phishing contracts, based on their fund flow relationships. Specifically, we
consider two deployer accounts to be associated and cluster them if they have ever transferred
tokens to each other, sent tokens to the same phishing account, or received tokens from the same
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phishing account. Using this clustering rule, we find that eight of the nine largest deployer accounts
belong to the same phishing group [32, 34-40]. Together, they have deployed 32,290 phishing contracts
since November 2, 2023, accounting for 85.7% of the total. Currently, they are still actively deploying
new phishing contracts. Furthermore, based on address labels from Etherscan, these accounts
include phishing entities associated with both Inferno [43] and Angel Drainer [27], two major Web3
phishing groups. Recent reports suggest that Angel Drainer has absorbed Inferno’s crypto-draining
platform [29, 30], which explains why these two phishing groups appear clustered together in our
analysis.

Answer to RQ3.4: Nine accounts deploy 91.1% of all phishing contracts. Scammers often use
tokens stolen from victims to fund the deployment of new phishing contracts. In statistics,
85.6% of phishing contract deployment fund can be traced to a specific entity, including CEXs,
mixers, cross-chain bridges, and victim accounts. Notably, 63.2% of them can be traced back to
victim accounts. Eight of these nine major deployers exhibit fund flow connections, indicating
they belong to the same phishing group. Collectively, They have deployed 85.7% of all phishing
contracts.

7 Discussion and Implications
7.1 Mitigation Methods

Our work reveals the widespread prevalence of phishing contracts on Ethereum and the significant
losses they have caused to users. Hence, we propose practical and effective strategies to protect
users from these threats.

User perspective. When accessing a decentralized application and requesting services, users should
closely inspect the website, including the URL, main page, sublinks, Twitter, and Discord links.
Before signing a transaction, users should carefully review the transaction details, including the
account and function call parameters. Additionally, they can verify the address label on Etherscan
to determine if it is an official account.

Wallet perspective. For wallet developers, it is their responsibility to offer services that safeguard
users from phishing attacks. They should regularly update and manage lists of phishing websites
and accounts, ensuring users are alerted when interacting with potential threats. Furthermore, our
system’s insights can be integrated into wallets. As mentioned in Section 5.2, when users interact
with a smart contract and send ETH, the wallet can verify whether the transaction is a phishing
transaction that steals ETH without returning anything. Likewise, when users grant permissions
for their ERC-20 tokens or NFTs to a smart contract, the wallet should assess whether it includes a
multicall function that can only be invoked by a phishing account. If such risks are detected, the
wallet should alert users.

Other service provider perspective. Meanwhile, CEXs should refuse to process tokens originat-
ing from phishing accounts. Cross-chain bridges should also block any cross-chain transactions
that come from these accounts. Furthermore, features from specific projects, such as the USDC
blacklist [24], can be leveraged to block phishing accounts and verify transactions effectively.
Moreover, as indicated by our findings in Section 6.4, if certain accounts utilize tokens from CEXs or
cross-chain bridges to deploy phishing contracts, these service providers should refuse to provide
service to them. In Section 6.3, we observe that many phishing contracts share the same bytecode.
The explorer should record this bytecode and label other contracts that match it. Additionally, the
explorer should track major contract deployers and promptly label phishing contracts deployed by
them.
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7.2 Generalization of our Work

Our work aims to enhance public awareness of phishing contracts and furnish valuable insights
into the whole ecosystem. Currently, we focus on phishing contracts on Ethereum. Nevertheless,
it is important to note that our comprehensive measurement framework, from data collection to
characterization, can be directly applied to all EVM-compatible chains (e.g., BSC and Tron). Indeed,
we have identified instances of phishing contracts on alternative blockchains, such as 0x48c8 on
Binance Smart Chain (BSC). > While we are currently dedicated to studying phishing contracts
on Ethereum, our future goal is to develop a comprehensive system that can detect and analyze
phishing contracts across various EVM-compatible chains.

7.3 Limitations of our Work

Once the details of our system are disclosed, scammers may modify their phishing contracts to evade
detection. For example, they may change the ETH phishing function to behave like a legitimate
function, returning valueless tokens. They could also alter the parameters and names of multicall
functions to evade detection. Since we are unable to predict features of the modified phishing
contracts, our detection system is limited to identifying phishing contracts based on their existing
features. Nevertheless, as our system extracts and analyzes features from smart contract bytecodes
for phishing contract detection, it can identify new phishing attacks if their bytecodes exhibit these
characteristics. What’s more, it has demonstrated remarkable effectiveness in identifying phishing
contracts, making it a valuable data source for measurement purposes.

8 Related Work
8.1 Exploring Cybercrime on Ethereum

As various forms of cybercrime continue to emerge on Ethereum, numerous research efforts have
been dedicated to analyzing and categorizing these threats [57-59, 63, 66, 67, 73, 78, 80]. Most of
these studies focus on scams like rug pulls, fake tokens, honeypots, and giveaway scams, which
differ from transaction-based phishing. For example, several studies propose techniques to extract
transaction frequency and train Al models for detecting phishing accounts [57, 66]. Xia et al. [78]
suggest extracting time-series, transactions, investors, and Uniswap-specific attributes to train a
classifier for identifying scam tokens. Roy et al. [73] investigate and identify phishing scams related
to NFT promotions on Twitter. Li et al. [67] analyze giveaway scams where users send tokens to a
specified address, expecting to double their amount, but ultimately receive nothing in return. He et
al. [59] detect and analyze transaction-based phishing websites on Ethereum that trick users into
initiating phishing transactions, resulting in the withdrawal of all their tokens. Chen et al. [58]
dissect payload-based transaction phishing on Ethereum. Huang et al. [63] carry out an empirical
study and create a prototype detection system to identify NFT rug pulls. Ye et al. [80] present an
in-depth analysis of visual scams associated with cryptocurrency wallets.

8.2 Investigating Blockchain Transactions

Several studies have focused on analyzing various types of blockchain transactions [61, 62, 68, 76, 77].
Hu et al. [77] take the first step to understand state-of-the-art Bitcoin mixing services. Wang et
al. [76] characterize ERC20 token approval transactions and their associated security issues on
Ethereum. Lyu et al. [68] analyze private transactions and their security implications on Ethereum.
Hu et al. [61] provide the first comprehensive analysis of cross-chain transactions, creating a large
dataset, uncovering usage patterns, and developing an automated detector that identifies hundreds
of abnormal transactions, highlighting security risks and misuse. Hu et al. [62] investigate Instant

30x48c80afd7ac03617b9f709a8eee7f2d10680f82
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Cryptocurrency Exchange transactions, revealing $12 million in illicit funds laundered due to weak
KYC and limited transparency.

8.3 Measuring Phishing Websites

When measuring phishing websites, the targets can be classified into three categories: phishing
campaigns, phishing website cloaking techniques, and toolkits. The first category involves empirical
investigations into the entire lifecycle and effectiveness of specific phishing attacks [60, 65, 72, 75].
For example, Ho et al. [60] provide the first comprehensive analysis of lateral phishing attacks,
uncovering the detailed aspects of these incidents on a large scale. The second category focuses
on analyzing the interaction between phishing websites and anti-phishing detectors, as well as
proposing new mechanisms to protect users [69-71, 82, 83]. For instance, Oest et al. [71] map
out the anti-phishing ecosystem by analyzing it through the lens of phishing toolkits. The third
category involves evaluating the characteristics of phishing toolkits and developing detectors
specifically tailored for these tools [54, 59, 64]. For example, Kondracki et al. [64] conduct the first
empirical study on Man-in-the-Middle (MITM) phishing toolkits, uncovering their prevalence and
associated risks.

9 Conclusion

In this paper, we presents the first empirical study of phishing contracts on Ethereum. We begin
by constructing a sample dataset containing 790 reported phishing contracts and identifying key
features of them. We then propose to collect phishing contracts by analyzing suspicious functions
in the bytecode and simulating transactions. In this way, we have built the first large-scale phishing
contract dataset on Ethereum, consisting of 37,654 phishing contracts. Leveraging this dataset, we
collect phishing transactions and conduct measurements from the perspectives of victim accounts,
phishing contracts, and deployer accounts. In total, these phishing contracts have earned $190.7
million from 171,984 victim accounts. Scammers frequently deploy phishing contracts to bypass
contract labeling security mechanisms. What’s more, we identify a large-scale phishing group
responsible for deploying 85.7% of all phishing contracts. Our work aims to serve as a guide to
protect users against transaction-based phishing.
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