
TIME-TRAVEL INVESTIGATION: TOWARDS BUILDING A
SCALABLE ATTACK DETECTION FRAMEWORK ON ETHEREUM

A PREPRINT

Lei Wu1, Siwei Wu1, Yajin Zhou∗1, Runhuai Li1, Zhi Wang2, Xiapu Luo3, Cong Wang4, and Kui Ren1

1Zhejiang University
2Florida State University

3The Hong Kong Polytechnic University
4City University of Hong Kong

October 26, 2020

ABSTRACT

As one of the representative blockchain platforms, Ethereum has attracted lots of attacks. Due to
the existed financial loss, there is a pressing need to perform timely investigation and detect more
attack instances. Though multiple systems have been proposed, they suffer from the scalability
issue due to the following reasons. First, the tight coupling between malicious contract detection
and blockchain data importing makes them infeasible to repeatedly detect different attacks. Second,
the coarse-grained archive data makes them inefficient to replay transactions. Third, the separation
between malicious contract detection and runtime state recovery consumes lots of storage.
In this paper, we present the design of a scalable attack detection framework on Ethereum. It over-
comes the scalability issue by saving the Ethereum state into a database and providing an efficient
way to locate suspicious transactions. The saved state is fine-grained to support the replay of ar-
bitrary transactions. The state is well-designed to avoid saving unnecessary state to optimize the
storage consumption. We implement a prototype named EthScope and solve three technical chal-
lenges, i.e., incomplete Ethereum state, scalability, and extensibility. The performance evaluation
shows that our system can solve the scalability issue, i.e., efficiently performing a large-scale analy-
sis on billions of transactions, and a speedup of around 2,300x when replaying transactions. It also
has lower storage consumption compared with existing systems. The result with three different types
of information as inputs shows that our system can help an analyst understand attack behaviors and
further detect more attacks. To engage the community, we will release our system and the dataset of
detected attacks.

1 Introduction

With an explosive growth of the blockchain technique, Ethereum [2] has become one of the representative platforms.
One reason is due to its inborn support of smart contracts. Developers use smart contracts to build Decentralized
Applications (DApps), ranging from gaming, lottery, Decentralized Finance (DeFi), and cryptocurrency, e.g., ERC20
tokens [6].

At the same time, attacks targeting Ethereum are increasing. By exploiting the vulnerabilities of smart contracts,
attackers could make huge profits in a short time. For instance, in April 2016, attackers exploited the re-entrancy
vulnerability in the DAO smart contract and stole around 3.6 million Ether [48]. Attackers used the similar vulnerabil-
ity to attack the decentralized exchange Uniswap [30] (July 2019) and DeFi application Lend.Me [29] (April 2020).
Besides, lots of other types of attacks have been observed in the wild [17, 18, 19].

∗Corresponding author (yajin zhou@zju.edu.cn).

ar
X

iv
:2

00
5.

08
27

8v
2

 [
cs

.C
R

]
 2

3
O

ct
 2

02
0

Locate
Suspicious

Transactions

Understand
Transaction
Behaviors

Locate
Candidate

Transactions

Confirm New
Attack

Instances

Knowledge
of the

Attack

Victim Contracts

Abnormal State

…

Public Information Step I: Understand the Attack

Step II: Detect More Attack Instances

Detected
Attacks

Figure 1: The typical flow of an investigation of attacks on Ethereum.

Accordingly, there is a pressing need for the security community to perform timely investigations on attacks and detect
more attack instances that were not revealed. This requires the capability to quickly locate suspicious transactions
based on various types of public information. For instance, suppose there is a reported attack to a smart contract (the
victim contract) on the public forum, but the detail of such an attack is unknown. In order to understand the attack, an
analyst needs to locate suspicious transactions that interact with the victim contract, and further construct the callgraph
between the victim contract and others to understand their behaviors. After that, the analyst may need to detect more
attack instances. In particular, he or she further locates candidate transactions 2 that are potentially related to the attack
and replay them. By doing so, the analyst can monitor the runtime state of a smart contract and hook into its execution
to detect more attacks. Fig. 1 shows this flow.

Note that, the investigation may continuously repeat the steps in Fig. 1. That’s because the understanding of an attack
needs multiple rounds of querying and analyzing transactions. This raises the challenge that the analysis framework
should be scalable to a large number of transactions (until July 5th, 2020, Ethereum has 754, 614, 255 normal trans-
actions and 962, 171, 044 internal transactions, respectively), i.e., efficiently locating and replaying transactions. 3

Limitations of existing systems Though multiple systems [28, 33, 38, 39, 47] have been proposed to detect mali-
cious smart contracts 4, the scalability issue makes them ineffective to perform the time-travel investigation due to the
following reasons.

• Tight Coupling between malicious contract detection and blockchain data importing (Limitation I) Some systems
import the entire blockchain data from the genesis block and replay historical transactions. During this process,
malicious contracts are detected based on pre-defined rules. The importing process is time-consuming (about ten
days) and cannot be repeated. It is inflexible to repeatedly replay transactions, revise and debug detection rules, a
considerable limitation to detect new attack instances.

• Coarse-grained archive data (Limitation II) To solve the previous limitation, systems could leverage the archive
mode [21] of popular Ethereum clients to repeatedly replay arbitrary transactions, after importing the data once.
However, the historical state is too coarse-grained to efficiently replay transactions, since unnecessary transactions
are executed (Section 3.1). Our evaluation shows that it costs more than 47 minutes to replay 100 normal transac-
tions. This is not scalable for real attack detection, which needs to replay tens of thousands and even millions of
transactions (Section 5.1.3).

• Separation between malicious contract detection and runtime state recovery (Limitation III) Instead of using the
coarse-grained archive data, recent systems recover and store the runtime information (called logical relation in the
paper [28]) into a database. The further detection is based on the stored logical relation. This avoids the cost of
repeatedly replaying transactions. However, the storage for the logical relation is huge. For instance, the logical
relation database for blocks ranging from 7, 000, 000 to 7, 200, 000 consumes 2, 949 GB [28]. Given the fact that
Ethereum has around 10, 400, 000 blocks (as on July 5th, 2020) and this number is still increasing, it’s not practical
to detect attacks in the whole Ethereum blocks.

Our approach Our system takes the following approaches to overcome the limitations.

2To avoid the confusion with suspicious transactions used in step I, we call transactions that are potentially related to the attack
in this step as candidate transactions.

3Because the investigation involves the replay of transactions to monitor the Ethereum state, it is like a time travel to certain
points in time, hence the name time-travel investigation.

4In this paper, we interchangeably use the following two terms, i.e., malicious smart contracts and attacks, because attacks are
usually automatically performed by malicious smart contracts.

2

• Limitation I: Our system does not perform the detection during the blockchain importing process. Instead, we
save the Ethereum state, e.g., internal transactions, created smart contract code, into a database. Further detection is
based on the saved state to locate suspicious transactions. This decouples the detection and the importing process.

• Limitation II: Our system replays arbitrary transactions in a scalable way. This is due to the well-designed and
fine-grained state that has been retrieved in the previous step. By doing so, there is no need to reply unnecessary
transactions in our system. For instance, our system only needs around one second to replay the same 100 normal
transactions that consumed 47 minutes in the archive mode (Table 5).

• Limitation III: Our detection is performed at the same time when replaying transactions. It provides an extensive
way for an analyst to specify detection rules, which are executed when replaying transactions. Thanks to the efficient
replay engine, our system does not need to save unnecessary runtime information. For instance, our system only
consumes 1, 844 GB storage for the historical state in the 10.5 million blocks (as on July 22th, 2020), compared with
2, 949 GB needed for 0.2 million blocks in TXSPECTOR [28]. This makes the detection among all Ethereum blocks
possible.

System Implementation With the scalability requirement in mind, we have implemented an analysis framework
named EthScope with three components.

Specifically, the first component, i.e., data aggregator, collects and recovers the critical blockchain state, including
internal transactions, self-destructed smart contracts, the account balance of each block, and etc. The database is used
to quickly locate suspicious transactions, and more importantly, provide fine-grained state that is needed by the replay

engine.

The second component, i.e., replay engine, is able to efficiently and repeatedly replay arbitrary and a large number
of transactions. This is critical to solve the scalability issue in existing systems. The saved blockchain state is carefully
designed to replay transactions without executing unnecessary ones.

The third component, i.e., instrumentation framework, exposes interfaces for an analyst to dynamically instru-
ment smart contracts and introspect the execution of transactions. An analyst can develop analysis scripts (using
the JavaScript language) to analyze transactions and detect malicious smart contracts. Our framework reduces the
performance overhead by a fine-grained design of instrumentation points and minimizes context switches between the
EVM and the analysis script. Compared with JSTracer [15], our framework is more flexible and efficient (Table 5).

Evaluation We evaluate our system from two perspectives. We first evaluate the efficiency of our system. The
performance evaluation shows that our system solves the scalability problem. Specifically, our system consumes 1, 817
GB for the state of 10, 400, 000 blocks. It is more efficient (around 2, 300x speedup) than existing ones when replaying
transactions. Then we use three different types of public information to detect attacks on Ethereum. Specifically, we
leverage a victim smart contract, a reported suspicious transaction, and the abnormal blockchain state as inputs to
understand the attack and further detect more attack instances. The comparison with our system and other ones on the
detection of the re-entrancy attack shows the accuracy of our system.

In summary, this paper makes the following main contributions:

• We present the flow of an investigation of attacks on Ethereum and summarize the limitations of existing systems
and their reasons.

• We propose multiple methods to solve the scalability issue and present the design of a scalable framework to detect
real attacks on Ethereum (Section 3).

• We implement a prototype and illustrate methods to address three technical challenges (Section 4).

• We evaluate the performance and effectiveness of our system with comprehensive experiments (Section 5).

To engage the community, we will release the source code of EthScope. We have released a trial system with a Docker
image on https://hub.docker.com/r/swaywu/ethscope-trial.

2 Background

2.1 Ethereum Accounts

Each account in Ethereum has an address and associated balance in Ether. There exist two types of accounts, i.e.,
externally owned account (EOA) and smart contract account, respectively. EOAs are controlled by private keys, while

3

https://hub.docker.com/r/swaywu/ethscope-trial

Smart Contract
Account

Externally
Owned Account

(EOA)

Smart Contract
Account

Externally
Owned Account

(EOA)

Transfer Ether Deploy Contract

N

Smart Contract
Account

In
vo

ke
C

on
tr

ac
t

Fu
nc

tio
n

Invoke Contract
Function

I

Transfer

Ether

Transfer

E
ther

I
I

N N

Figure 2: Normal and internal transactions. N: normal transactions; I: internal transactions.

smart contract accounts are controlled by their contract code [3]. Note that, both accounts can have Ether and other
tokens, thus are associated with balances 5.

The address of a new smart contract is calculated from the number of transactions being sent (nonce) and the address
of its creator, which is the account that creates the smart contract. Due to this, the newly created contract address is
predictable by its creator. We will illustrate an attack that exploits this property in Section 5.2.

2.2 Transactions

A transaction is a type of message call that serves three purposes, including transferring Ether, deploying a smart
contract, and invoking functions of a smart contract. Transactions on the Ethereum are normally initiated from EOAs,
hence the name normal transactions.

Besides, there exists another type of transactions that are initiated from a smart contract. They are called internal
transactions, which are used to invoke functions inside another smart contract, or transfer Ether to other accounts.
For instance, the opcode CALL can be used to invoke a function of another smart contract, thus creating an internal
transaction.

Note that, an internal transaction is always initiated from a normal transaction, since the smart contract that creates an
internal transaction should be executed in the first place (from an EOA using a normal transaction.) Moreover, a normal
transaction could create numerous internal transactions, if the invoked smart contract does so (invoking functions of
other smart contracts.) Fig. 2 shows an overview of normal and internal transactions.

2.3 Ethereum State

Ethereum’s nodes are devices participating in validating transactions. There are four types of state in Ethereum, which
are useful to analyze and replay transactions. They include block information, normal transaction information, internal
transaction information and accounts, as shown in the following.

1. Block information. The block information includes block number, block hash, and etc.
2. Normal transaction information. The normal transaction information includes addresses of the sender and the

receiver, transaction hash, transaction data, transaction values, and etc.
3. Internal transaction information. The internal transaction information is basically the same as the normal transac-

tion, plus the depth of the call stack of EVM.
4. Account state. The account state includes balance, nonce, code and storage of each account (including EOAs and

smart contract accounts).

Normally, a full Ethereum node only permanently stores the block information, normal transaction information and
the account state of the latest blocks. When synchronizing from the network, users can specify an option, e.g,
-gcmode=archive in Geth, to retain a snapshot of accounts’ state for each block. With the time-serial accounts’
state, users can use the API debug.trace transaction to replay arbitrary transactions in the exact manner as it was
executed on the network. However, this method is not scalable. We will discuss the way used in our system to improve
the performance of the replay process in Section 3.1.

2.4 Smart Contracts

Ethereum virtual machine A smart contract is a program that runs on an underlying Ethereum virtual machine
(EVM) to transit the global state of the Ethereum network. A smart contract is usually programmed using a high-
level language, e.g., Solidity, and then is compiled into low-level machine instructions (called opcodes), which will be
fetched, decoded and executed by EVM.

5A smart contract account can have balances may contradict one’s intuition.

4

Table 1: The comparison of state that could be retrieved by existing systems. Block: block information; NT: Normal
transaction information; IT: internal transaction information; Account: Account state (Section 2.3). X: support; ×:
not support;4: partial support.

Block NT IT Account Interface
Ethereum full node X X × × ×
Archive node [21] X X × 4a ×

Etherscan [25] X X 4b 4c 4d

BigQuery [31] X X X × X
Our system X X X X X

4a: The account state is coarse-grained that unnecessary transactions will be replayed (Section 5.1.3).
4b: Etherscan does not provide the invocation data of internal transactions.
4c: The account state provided by Etherscan does not support the replay of transactions.
4d: Etherscan does not support customized query for a large number of transactions, such as SQL.

EVM is a stack-based virtual machine. It has a virtual stack with 1, 024 elements. All computations are performed
on the stack. It means the operands, the result of intermediate operations are stored on the stack. For instance, when
executing the ADD opcode to add two operands, EVM will pop two values from the stack, add them together and then
push the result on the stack.

Besides the stack, there are four other types of data locations in EVM, memory, storage, input field, and ret field.
The memory, input data and ret field are used to store temporary data such as function arguments, local variables,
and return values. They are volatile, which means their values will be lost when the execution of a smart contract is
finished. In contrast, the storage is a (per-account) persistent key-value store. For instance, a gaming smart contract
could leverage the storage to maintain the balance of each player.

Function invocation As discussed in Section 2.2, internal transactions are used to invoke smart contract func-
tions. This is achieved through executing a message call [22] launched by six opcodes, including CALL, CALLCODE,
DELEGATECALL, STATICCALL, CREATE and CREATE2.

In a smart contract, there is a signature (four bytes) to denote the destination function that will be invoked. The
signature is defined as the first four bytes of the hash value (SHA3) of the canonical representation of the function,
including the function name and the parenthesized list of parameter types. Since this is a one-way function, it is hard
to retrieve the function name from the signature. However, there is an online service [20] that we can lookup the
function name given a signature.

Smart contract creation and destruction A smart contract could be created using two opcodes, i.e., CREATE and
CREATE2. Both opcodes behave similarly, except the way to calculate the address of the newly created smart con-
tract [14].

A smart contract can be self-destructed through the opcode SELFDESTRUCT. This opcode destroys the smart contract
itself, and transfers all the Ether inside the contract to the address specified in the parameters of this opcode (the target
address). However, if the account with the target address does not exist, this opcode will create a new account with
this address. This means that the SELFDESTRUCT opcode implicitly creates a new account. Moreover, self-destruction a
smart contract reclaims the gas since it frees the resources on the blockchain.

3 System Design

In the following, we will first illustrate technical challenges and then present the overall design of EthScope.

3.1 Technical Challenges

There are three technical challenges for building a scalable attack detection framework on Ethereum.

Incomplete blockchain state First, our system needs to provide a flexible interface to query the Ethereum state.
For instance, when being used to understand and detect an attack, our system shall have the capability to quickly
locate suspicious transactions from different perspectives, e.g., the values in the transactions or the number of internal
transactions that exceed a certain threshold. Although there exist many methods that could be leveraged to explore
Ethereum state, few of them fulfill our requirements. The details are shown in TABLE 1. Among them, Ethereum
in BigQuery [31] maintains the Ethereum state into seven tables and provides an SQL interface to query the state.
However, it lacks the account state that is critical for replaying transactions.

5

Ethereum
Network

Instrumentation Framework

Instrumentation
Points

Dynamic
Taint Engine

Replay Engine

Prepare
Historical State

Execute
Transaction

Group
Transactions

EthScope

Ethereum State

Execution Contexts

Data Aggregator

Query
InterfaceCollect Ethereum

State
Database

Analyst-provided
Scripts

Data
Organization

Figure 3: The overall architecture of EthScope.

Scalability Our system needs to replay and analyze a large number of transactions. There exist three different
methods that are adopted by existing systems [33, 38, 39]. All of them suffer from the scalability issue.

The first one is to import the whole blockchain data with a customized EVM, which will execute all transactions
(normal and internal ones) from the genesis block (the first block on the chain). During this process, attack-specific
rules are executed. Representative tools include ECFChecker [39], ÆGIS [38] and SODA [33]. This method cannot
selectively replay interested transactions. Thus, many unrelated ones have been executed, consuming lots of time.
Moreover, the coupling between the detection and the importing process makes the detection of new attack instances
hard, since the time-consuming importing process cannot be executed repeatedly.

The second way is to use the debug.trace transaction API [13] exposed by Geth [4] to replay a transaction with
the Ethereum archive node [47]. Though this method is more efficient than the previous one, it still suffers from the
scalability issue. That’s because the granularity of historical state maintained by the Ethereum archive node is a block
rather than a transaction. In order to replay a transaction, all the (unnecessary) transactions before it inside the same
block will be executed. Our system solves this challenge by recovering a transaction-level historical state.

The third one is first replaying all transactions and recording all the runtime information [28]. The following detection
is on the recorded information. However, this method consumes lots of storage. According to the data reported in the
paper [28], performing the attack detection in 2 millions blocks cost at least 2, 949 GB. It’s not scalable to analyze all
the Ethereum blocks (more than 10 millions blocks).

Extensibility to detect different attacks Our system should be extensible to detect various attacks with analyst-
provided scripts. Geth has a mechanism called JSTracer [15] to introspect the execution of a smart contract. It
allows users to specify a JavaScript file that will be invoked for every opcode executed. However, frequent switches
between the EVM and the JavaScript file make it impractical to analyze a large number of transactions. Our system
addresses this challenge with two optimizations. First, it has well-defined instrumentation points to minimize the
number of context switches. The analysis script will be invoked on-demand (instead of each opcode) when defined
instrumentation points are hit. Second, our framework is equipped with a dynamic taint analysis engine inside the
EVM. Analysts do not need to implement their own taint engine usings JavaScript files, which further reduces the
number of context switches.

3.2 Overall Design

We address these challenges with three components, i.e., data aggregator, replay engine, and instrumentation

framework. The overall system architecture is shown in Fig. 3.

Specifically, data aggregator imports the whole blockchain data and collects the Ethereum state. The Ethereum state
is collected by modifying the EVM. The collected state is stored in a cluster database equipped with a flexible query
interface. An analyst could perform customized queries to locate transactions that are needed for further analysis.
Note that, the process to import the blockchain data is a one-time effort. All the saved state could be queried without
the need to import the blockchain data again. Our system also takes a careful design of the stored state to save the
storage consuming. In fact, it consumes less storage than the Ethereum archive mode (Section 5.1.1).

The second component, i.e, replay engine, is used to replay arbitrary transactions. An analyst first locates candidate
transactions and then feeds them to the engine. The replay engine obtains the related state including related accounts’

6

state for each transaction from the data aggregator. After that, it re-executes the transactions. Thanks for the
transaction-level Ethereum state recovered by the data aggregator, our system does not need replay unnecessary
transactions (Section 5.1.3).

The third component, i.e, instrumentation framework, provides a mechanism to customize the analysis. Specifically,
an analyst can develop analysis scripts by defining callback functions for instrumentation points. For instance, a
specific callback function could be defined and will be invoked if and only if the CALL opcode is executed. By doing
so, our system avoids unnecessary context switches between EVM and the analysis script. During this process, the
EVM state, including related stack and memory values, is provided to the script. Moreover, to facilitate the analysis,
a dynamic taint engine is provided with well-defined APIs.

4 Implementation Details

We have implemented a prototype named EthScope. The data aggregator is implemented with around 1, 137 lines
changes to the Geth client. Our system uses the distributed search and analytics engine Elasticsearch [7] to store
the Ethereum state and provide an interface to query them. The replay engine and instrumentation framework

are implemented with 5, 191 lines changes to EVM. In the following, we will elaborate the implementation of each
component.

4.1 Data Aggregator

State collection The collection of block information and normal transaction information is straightforward. Our
system changes the EVM to collect the data before the execution of each block (block information) and after the
execution of each normal transaction (normal transaction information).

Collecting internal transaction information and accounts’ state requires our system to hook into the process of execut-
ing smart contracts. For instance, when the opcode SSTORE is executed, the method setState in EVM is triggered.
We change this method and add the code to capture the state. Note that, the state is not immediately stored into the
underlying database. Instead, we create a buffer and save the state into the database when the buffer is full.

One challenge is how to ensure the completeness and correctness of the collected state. In our system, we solve
this challenge by comparing the collected state with ground truths. Specifically, for block information and normal
transaction information, we can easily compare them with the data stored inside the Ethereum full node. For internal
transaction information, we compare our data with the data provided by online services, e.g., Etherscan [25]. However,
there are no ground truths for the transaction-grained historical accounts’ state. We solve it in the replay engine (State
verification in Section 4.2).

Data organization and query interface Our system takes the following methods to avoid the scalability issue
caused by storage-consuming, while providing enough information to replay a transaction. Global variables of smart
contracts consume lots of storage. That’s because they are updated frequently in different blocks.

Theoretically, we need to store all the global variables for each transaction in each block. However, when replaying
a transaction, only the variables touched by that transaction are needed. Thus, for each transaction, we only store the
used global variables (storage values in Ethereum) in the database.

Table 7 in Appendix shows the detailed data schema. Specifically, the Code index 6 stores the smart contracts’ code
and the State index records the information about creating and destructing accounts. Remaining ones are stored in
the Block index.

Thanks to the Elasticsearch, an analyst could leverage the Query DSL based on JSON to define queries [8] for cus-
tomized analysis.

4.2 Replay Engine

In order to monitor the transaction behaviors at the runtime, we build an engine that is capable of replaying arbitrary
transactions on Ethereum. Our engine is based on EVM of Geth, with modifications to add support to retrieve the
state from data aggregator. Moreover, it provides interfaces to communicate with instrumentation framework

(Section 4.3).

6The index in Elasticsearch is similar to the database in a relational database.

7

Table 2: Three types of instrumentation points supported in our system. O: opcode-orientated; T: transaction-
orientated; C: context-orientated.

Instrumentation Points Type Description
{op}

after{Op} O before and after the opcode {op}
is executed

transactionStart
transactionEnd T before and after an external

transaction is executed
contractStart
contractEnd C before and after a new contract

is executed

Group transactions The input to replay engine is a list of hash values for the transactions to be analyzed. In order
to speed up the process of obtaining related data from data aggregator, our system divides transactions into different
groups, with a threshold that each group contains no more than 10, 000 transactions. This threshold is related to the
size of the system memory. For each group, replay engine first retrieves the historical state in a batch, and then
replays transactions in the group.

Retrieve Ethereum historical state In order to replay a normal transaction, we need to retrieve the Ethereum
historical state from data aggregator. First, we get the block and transaction information such as Difficulty and
GasLimit from the Block index. Second, we retrieve the code of smart contracts that are related to this normal
transaction in the nested field GetCodeList inside the field Transactions. That’s because a normal transaction could
involve multiple smart contracts. We retrieve the code for all the smart contracts. Third, we obtain all accounts’ state:
nonce, balance and storage values that the transaction will load. When the normal transaction is to create a new smart
contract, we need to retrieve the deploying code of the new smart contract from the index Code, which is the input of
this normal transaction, too. Table 7 in Appendix shows the details of the mentioned fields and indices.

Execute transactions After retrieving the historical state, replay engine executes the transactions. During this
process, callback functions defined in the analysis script will be invoked. In order to speed up the process, our system
further divides transactions in a group into different clusters according to the number of CPU cores, and executes
transactions inside different clusters in parallel.

Verify state After replaying each normal transaction, replay engine will compare the used gas and output of this
transaction with the same fields in the normal transaction information in data aggregator. This ensures the correct-
ness of the replay process. Note that, the normal transaction information in data aggregator has been verified (State
collection in Section 4.1).

4.3 Instrumentation Framework

The instrumentation framework aims to provide extensible APIs for an analyst to develop analysis scripts to detect
new attack instances. Besides, instrumentation framework provides a dynamic taint engine to facilitate the analysis
of control dependency and data dependency.

Overview The framework is hooked into the replay engine and provides JavaScript interfaces. Our system uses
the Duktape JavaScript engine binding for Go [10] to execute JavaScript functions inside the EVM developed in Go.
Specifically, it defines instrumentation points, where the replay process will be suspended and user-specific callback
functions (in JavaScript) will be invoked. At the same time, it provides the interfaces for analysis scripts to access the
current execution context, such as stack values and memory values. When the callback function finishes its execution,
the replay engine continues the smart contract’s execution from the instruction after the instrumentation point.

Instrumentation points Our system supports three types of instrumentation points, i.e., opcode-, transaction- and
contract-oriented ones. Table 2 shows an overview of these instrumentation points.

First, the opcode-oriented instrumentation links with two callback functions for each opcode, {op} and after {op}.
They are launched before and after executing the opcode {op}.

Second, the transaction-oriented callbacks, including transactionStart and transactionEnd, are launched before
and after the execution of a normal transaction. These two instrumentation points are usually used for the initialization
and processing results in the analysis script. Note that, this type of instrumentation points only works for normal
transactions, which are initialized from EOAs. For internal transactions that are initialized from smart contracts, they
are covered in the contract-oriented instrumentation point.

8

contractStart

push, afterPush

return, afterReturn

contractEnd

C

O

O

C

transactionStart

contracStart

push, aftePush

call

T

C

O

O

afterCall

return, afterReturn

ContractEnd

transactionEnd

O

O

T

C

PUSH
CALL
RETURN

PUSH
RETURN

Internal Transaction

Contract A Contract B

EOA Normal
Transaction

Figure 4: The sequence of invoking callback functions at different types of instrumentation points. The code of the
smart contract is for illustration only. O: opcode-oriented; T: transaction-oriented; C: contract-oriented.

Table 3: APIs provided by our instrumentation framework.
APIs to retrieve execution context

op.getN() stack.length() memory.slice(start, end) contract.getSelfAddress() getBalance(addr) getBlockNumber() getPc()
op.toNumber() stack.peek(n) memory.getUint(offset) contract.getCodeAddress() getNonce(addr) getTxnIndex() getGas()
op.toString() contract.getValue() getCode(addr) getTxnHash() getDepth()

contract.getInput() getStorage(addr) getReturnData()
Other APIs

cfg.hijack(isJump) params.get(key)
APIs to assign, clear and check taint tags

labelStack(n,tag) labelMemory(offset,size,tag) labelInput(o,s,t) labelReturnData(o,s,t) labelStorage(addr,slot,tag)
clearStack(n) clearMemory(offset,size) clearInput(o,s) clearReturnData(o,s) clearStorage(addr,slot)
peekStack(n) peekMemory(offset) peekInput(o) peekReturnData(o) peekStorage(addr,slot)

peekMemorySlice(offset,size) peekInputSlice(o,s) peekReturnDataSlice(o,s)

Third, the contract-oriented callback functions, including contractStart and contractEnd, deal with function calls
crossing smart contracts (internal transactions). These two functions are invoked at the start and at the end of the
execution of a smart contract function.

Fig. 4 shows the sequence of invoking callback functions at different instrumentation points. When an EOA issues a
normal transaction, transactionStart will be invoked, and then contractStart is executed. That’s because the nor-
mal transaction initializes the execution of smart contract A. Then the callback functions for each opcode are launched,
until the CALL opcode. This opcode invokes the function inside the smart contract B and creates the internal transac-
tion. Since the smart contract B is executed, contractStart will be invoked again. After that, callback functions for
different opcodes will be invoked accordingly.

Note that, the execution context is switched from the EVM to the Duktape JavaScript engine, only when a callback
function is defined and the instrumentation point is hit at runtime. This minimizes the number of context switches
between EVM and Duktape. Compared with the JSTracer inside the Geth, our implementation is more efficient
(Section 5.1.3).

APIs to retrieve the execution context Our system provides multiple APIs to get the information of current execu-
tion context. Table 3 shows an overview of these APIs. We elaborate some of them in the following.

• Normal transactions. Attributes of normal transactions are obtained by invoking getBlockNumber, getTxnIndex and
getTxnHash. These attributes are used to distinguish different normal transactions.

• Internal transactions. Two APIs contract.getSelfAddress and contract.getCodeAddress are used to retrieve the
context contract and code contract. The code contract is the address of the callee smart contract. However, the
context contract can be the caller and the callee smart contract, depending on the opcode used to invoke the contract.
This complies with the definition in Geth [5]. The API contract.getValue returns the amount of Ether that is
transferred into the code contract.
Every time an internal transaction starts, the EVM stack depth will be increased by one. On the contrary, every time
an internal transaction ends, it will be decreased by one. The API getDepth is provided to get current EVM stack
depth. By using this information, we can detect the occurrence of a recursive function call.

• Parameters and return values. The API contract.getInput returns the input data (parameters) when invoking a
function, while getReturnData obtains return values.

9

1 {
2 s l o a d : f u n c t i o n (l o g){
3 c o n t e x t C o n t r a c t = toHex (l o g . c o n t r a c t . g e t S e l f A d d r e s s ())
4 key = l o g . s t a c k . peek (0) . t o S t r i n g (1 6)
5 t a g = c o n t r a c t +"_"+key
6 l o g . t a i n t . l a b e l S t a c k (0 , t a g)
7 } ,
8
9 jumpi : f u n c t i o n (l o g) {

10 t a g s = l o g . t a i n t . p e e k S t a c k (1)
11 f o r (t a g in t a g s) {
12 c o n t e x t C o n t r a c t = t a g . s u b s t r i n g (0 , t a g . indexOf ("_"))
13 key = t a g . s u b s t r i n g (t a g . indexOf ("_"))
14 c o n s o l e . l o g ("Storage" , key , "in contract" , c o n t e x t C o n t r a c t , "influenced the control flow.")
15 }
16 }
17 }

Figure 5: An example of how to use the dynamic taint engine to assign and check taint tags.

• The program counter and remaining gas. APIs getPc and getGas return the current program counter and remaining
gas.

• Accounts. APIs getBalance, getCode, getStorage return the current states of an account at any time.

Dynamic taint engine Dynamic taint analysis has been widely used for security applications. Our framework im-
plements a dynamic taint engine that facilitates the development of analysis scripts.

Our taint analysis engine supports the taint tag propagation crossing different smart contracts. When the EVM triggers
an internal transaction, it will pass input values from the caller’s memory to the callee’s input field. When the invo-
cation returns, the return value is put into the caller’s ret field. We propagate the taint tags in opcodes CALLDATALOAD,
CALLDATACOPY and RETURNDATACOPY that operate stack, memory, ret and input field. Table 3 summarizes APIs to assign,
clear and check taint tags. APIs label* allow an analyst to assign taint tags. APIs peek* and clear* allow an analyst
to check and clear tags.

Fig. 5 shows an example of how to use these APIs. Specifically, two callback functions sload and jumpi are invoked
before executing opcodes SLOAD and JUMPI, respectively. Inside the callback function sload, it assigns the taint tag to
the value on the top of the stack (index 0) using log.taint.labelStack(0, tag). Then the taint engine will propagate
the tag, even crossing different contracts. When the callback function jumpi is executed, the log.taint.peekStack(1)

checks whether the second value on the stack (index 1) has the taint tag. If so, it changes the program counter. Thus,
by checking the taint tag, an analyst can get the storage variables that can influence the control flow.

5 Evaluation

In this section, we will present the evaluation result of EthScope by answering the following research questions. If not
otherwise specified, the evaluation is performed on the dataset that contains the Ethereum state from the genesis block
(mined on July 30th, 2015) to the 10, 400, 000th one (mined on July 5th, 2020).

• R1 What’s the performance of EthScope and whether EthScope solves the scalability issue?
• R2 Whether EthScope can help understand the behaviors of suspicious transactions and detect more attack instances?
• R3 Whether EthScope performs better than previous systems in terms of detected attacks?

To answer R1, we report the comparison result of the storage consumption and the time used to replay transactions.
The result shows that EthScope consumes less storage and has a speedup of around 2300x when replying transactions.
This demonstrates the capability of our system to perform the analysis on a large number of transactions.

To answer R2, we use three different types of public information as inputs, including a victim smart contract, a
reported suspicious transaction, and the abnormal blockchain state. For each type of information, our system first
understands attack behaviors, and then detect more attack instances. We report the result in Section 5.2, Section 5.3,
and Section 9.1 (in Appendix), respectively.

To answer R3, we compare the detection result of the re-entrancy attack with previous systems. Our evaluation shows
that our system is more accurate than previous ones. We report the result in Section 5.4.

10

Table 4: The comparison of the storage usage.

Blocks Storage
Geth Archive Node 0 - 7, 635, 000 2, 320GB
Trace DB of TXSPECTOR 0 - 7, 200, 000 1, 577GB
Logic Relation DB of TXSPECTOR 7, 000, 000 - 7, 200, 000 2, 949GB
data aggregator 0 - 10,507,977 1,844GB

Table 5: The comparison of JSTracer and our system to replay 100 normal transactions.

Tools Retrieve
State

Execute
Script Other

JSTracer 39m 6s 997ms 0m 16s 984ms 8m 13s 467ms
Total 47m 37s 448ms

Our system 0m 0s 446ms 0m 0s 217ms 0m 0s 544ms
Total 0m 1s 207ms

5.1 Performance and Scalability

In this section, we demonstrate the scalability of our system via evaluating its performance from the following per-
spectives. First, the storage use is more efficient than previous systems, while at the same it can support the replay
of arbitrary transactions. Second, the data aggregator can help locate suspicious and candidate transactions in an
efficient way. Third, the replay engine can replay arbitrary transactions, with a 2,300x speedup. All experiments
were performed on a machine with four CPUs (Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz) and 128GB memory.

5.1.1 Storage Use

The data aggregator in our system stores the saved Ethereum state. We compare the storage use of our system with
other ones that also store the Ethereum state. Specifically, ECFCHecker, Sereum, and SODA leverage the archive node
of Geth to perform the analysis. TXSPECTOR replays historical transactions in Ethereum to record EVM bytecode-
level traces into a trace DB, and stores the logic relations into a logic relation DB [28].

As shown in Table 4, the Geth archive node [21] of the first 7.635 million blocks uses 2, 320 GB 7. The trace DB of
TXSPECTOR and logic relation DB of TXSPECTOR consume 1, 577 GB, and 2, 949 GB for 7.2 million and 0.2 million
blocks, respectively. Obviously, TXSPECTOR requires more space to support its analysis.

Our system costs only 1, 844 GB after collecting the Ethereum state for 10.5 million blocks. That’s because it only
collects necessary state information to perform the security analysis and replay transactions. Note that, our system
does not scarify the analysis capability to save storage. In particular, even though it consumes less storage, it can fully
support the query to locate candidate transactions and replay them, as shown in the experiments to answer R2. This
result shows EthScope does not suffer from the scalability issue due to the storage consumption.

5.1.2 Query Transactions

The data aggregator provides an interface to locate transactions by querying the saved Ethereum state, e.g, a normal
transaction with more than 1, 000 internal transactions whose Ether transferred are large than a certain amount. Our
evaluation shows that most querying tasks can be finished in seconds, while complicated ones may last for a few
minutes. For instance, the collection of candidate transactions for the re-entrancy attack (Section 5.3) and the bad
randomness attack (Section 5.2) both take less than 5 minutes (retrieved 209, 227 and 10, 296, 519 candidates from
754, 614, 255 normal transactions) in our experiments.

5.1.3 Replay Transactions

In the following, we will compare the performance of our system with JSTracer (in the archive mode) supported
by Geth [4]. To the best of our knowledge, this is the only comparable counterpart that can repeatedly replay and
instrument transactions.

First, we randomly pick 100 normal transactions that have triggered internal transactions. Then, we develop a script
that has an equivalent functionality with the example [12] (4byte tracer.js) provided by Geth. Finally, we use the
JSTracer and our system to replay 100 normal transactions. Note that, a normal transaction could trigger multiple
internal transactions, thereby the total number of replayed transactions is 2, 519.

Table 5 shows the comparison result of the transaction replay time between JSTracer and our system. Specifically,
JSTracer spends more than 47 minutes to replay the transactions, while our system takes only around one second to

7This data is obtained from the official Ethereum blog [23].

11

replay them. The result suggests that our system outperforms JSTracer with an around 2, 300x speedup. We further
explore the possible reasons.

• Granularity of the Ethereum historical state To retrieve the Ethereum historical state of the 100 normal trans-
actions, JSTracer had to replay 3, 289 additional normal transactions. However, EthScope can directly query fine-
grained accounts’ state information from the data aggregator.

• Number of context switches JSTracer needs to switch to the JavaScript environment for every opcode. Alterna-
tively, our instrumentation framework only performs context-switch when instrumentation points are hit. That is
why JSTracer performed 1, 305, 864 context switches, while EthScope only performed 2, 502 ones.

The result demonstrates that our system can replay a large number of transactions. In fact, for the 10, 296, 519 normal
transactions used to detect the new instances of the bad randomness attack, our system took 12 hours 7 minutes to
replay all of them, which is quite difficult (if not impossible) for other systems to complete such a task.

Answers to Q1: Our system consumes less storage than other systems, while at the same time the stored Ethereum
state can support replaying arbitrary transactions. Besides, the replay engine in our system is more efficient when
replaying transactions. The lower storage consumption and efficient replay engine make the detection of attacks in the
whole Ethereum blocks possible.

5.2 Type-I Input: A Victim Contract

An analyst may receive incomplete information, e.g., a smart contract is being attacked. However, there is no detailed
information about the vulnerability of the victim contract, nor the information on how the attack works. Our system
can help an analyst understand the attack, and detect more attack instances. We use the Fomo3D [24] as an example
to illustrate how EthScope helps analysts reveal attacks from a victim smart contract. The input to our system is the
address 8 of the victim smart contract.

5.2.1 Understand the Attack

As shown in Fig. 1, an analyst leverages our system to understand the attack behaviors.

Locate suspicious transactions To locate suspicious transactions that may involve in the attack, our first step is to
construct the money flow graph to locate suspicious accounts. That’s because the Fomo3D is a gambling app. The
money will flow into (successful) attackers (and other lucky players). Fig. 6 shows the money flow graph constructed
using transactions retrieved from the data aggregator. Specifically, nodes in the graph represent accounts, and edges
represent the direct and indirect transactions with the Fomo3D game. The size of each node denotes the number of
Ether it receives.

We observe that several accounts have a much larger size than others. It means these accounts have received much
more Ether from the game than others. Initial analysis shows that three of them belong to Fomo3D (number 0, 1, and
6). We then take further analysis for other accounts.

Understand suspicious transactions We analyze a normal transaction 9 that invokes the smart contract (index 2 in
the money flow graph) 10 to receive Ether from Fomo3D. To this end, we construct the dynamic call graph in Fig. 7.
The nodes in the graph represent accounts (both EOA and smart contracts), and the edges denote Ether transfer or
function invocation.

The call sequence of this graph shows that, the contract (0x94c0d0) transfers 0.1 Ether to the contract (0x50ac2e)
(index 4), which further creates a new smart contract (0x78414f) (index 6). This new contract buys the key (index 9)
with 0.1 Ether and then receives 0.126 Ether (index 17) from the game. The received Ether is transferred back to the
contract (0x94c0d0) with a SELFDESTRUCT operation (index 18). During this process, it obtains a profit of 0.026 Ether.

There also exist many similar transactions related to the contract (0x94c0d0). These transactions get a lot of rewards
from the Fomo3D game. We suspect the contract (0x94c0d0) has a mechanism to predict whether it can win the bonus
before playing the game. Otherwise, it can not win every time. After locating all the transactions and smart contracts
created from this account by querying the data aggregator, we find that the contract (0x94c0d0) indeed can predict
whether it can win. That’s because the Fomo3D game uses the address of the player (controlled by the attacker) as one
of the sources to generate the random number that determines the winner.

80xa62142888aba8370742be823c1782d17a0389da1
90xee95751e94c8427f94ddf34e15bb322f681a0d264e9d2d21c3fc0d687dff22c2

100x94c0d029a7b64bf443e89c5006089364c0d60d61

12

a6214288(0)

73b61a56(8)

4c7b8591(6)

c7029ed9(1)

94c0d029(2)

db91670c(5)

ab53cec2(7)

ba9a5a26(3)

73ebcce1(9)

3709f122(4)
5bae8331(10)

Figure 6: The money flow graph of the Fomo3D smart contract. For better illustration, we use 180, 244 transactions
to generate this graph. The total number of transactions with Fomo3D is much larger.

Fig. 8 shows (a simplified version of) the attack flow. There is a controller contract, which creates a lot of proxy
contracts (more than 1, 000) in advance. Then during the attack, the controller attack loops through each proxy
contract. It calculates the address of a newly created smart contract (but does not create it.) because the address is
predictable (Section 2.1). Then it uses this address and the block information to predict whether it will get the bonus
by executing the same logic with the Fomo3D game. If so, the proxy smart contract creates the attacking contract,
which further buys the key to play the game and win the bonus. After that, the attacking contract self-destructs itself
to transfer the earned bonus to the controller smart contract.

Because the attack exploits the vulnerable process of the smart contract to generate a random number, we name this
attack as the bad randomness attack.

5.2.2 Detect more attack instances

After understanding the above attack, we then use our system to detect more bad randomness attacks. Specifically,
we first use the data aggregator to filter out transactions that are not related to the attack. Then we use the replay

engine to replay the remaining transactions and the instrumentation framework to confirm new attack instances at
runtime.

Locate candidate transactions In order to avoid replaying unnecessary transactions (costing lots of time), we first
use the data aggregator to remove transactions that are not related to the bad randomness attack.

We label normal transactions that fulfill the following requirements as candidate transactions. First, it has triggered
more than one internal transaction. Second, the triggered internal transaction has transferred Ether to another smart
contract. That’s because in order to launch the attack, attackers have to use a contract to transfer Ether to play the game,
thus creating an internal transaction. This rule is conservative. It may label some benign transactions as candidates.
However, we want to include as many candidate transactions as possible in this step and leverage the replay engine

to confirm whether they are real attacks. In total, our system locates 10, 296, 519 candidate transactions.

Confirm the bad randomness attack After locating the candidate transactions, we then use the replay engine to
replay them and confirm attacks at runtime.

13

0xa62142…

Fomo3D

1

0x825d5d…

Attack

Launcher

0x94c0d0…

Controll

er

0x347b6f…

0. CALL

1.DELEGATECALL

0x696b25ec

2. CALL

airDropPot_

3. CALL

airDropTracker_

4. CALL

0.100ETH

proxy

0x50ac2e…

Proxy

5. DELEGATECALL

0x4ff88e18

0x78414f…

Attackin

g

6. CREATE

0.100ETH

7. DELEGATECALL

0x6d8cac

8. CALL

aiDropTracker_

9. CALL

buyXid

0.100ETH

10. CALL

getPlayerID

0xd60d35…

Fomo3D

2

11. CALL

getPlayerLAff

12. CALL

getPlayerLAff

0xdd4950…

Fomo3D

3

13. CALL

0.002ETH

deposit

14. CALL

0.002ETH

deposit

0x4c7b85…

Fomo3D

4

0xf9ba09…

Fomo3D

5

15. CALL

0.001ETH

potSwap

16. CALL

withdraw

17. CALL

0.126ETH

18. SELFDESTRUCT

0.126ETH

Figure 7: The dynamic call graph of a suspicious transaction. We draw three types of information for an internal
transaction: 1. Serial number and the opcode to trigger an internal transaction; 2. Transferred Ether, null means no
Ether transferred; 3. Invoked function (we search the name from the 4byte function signature database [20]), null
means that the input data is empty; (Square: EOA, Circle: smart contract; Grey Box: attacker, White Box: victim.)

Controller
Contract

Attacking
Contract

Fomo3D
Contract

Proxy
Contract

…

SELFDESTRUCT(transfer Ether)

CREATE buyXid

CALL(transfer Ether)0x94c0d029a 0xbe997116

0x73542fcd

Figure 8: The flow of the bad randomness attack.

The key observation of this attack is that the malicious contract is using the same algorithm to generate the random
number as the victim contract. We develop the detection script as follows.

1. First, we find all the variables that are generated from block information, e.g., coinbase, gaslimit and etc. This is
implemented using our taint analysis engine by setting the block information as taint sources.

2. Second, for each variable v found in the previous step, we check whether it influences the control flow of the smart
contract. That’s because we only care about the variables that can determine the winner. If so, we log its execution
context C.

3. If there exist two same execution contexts in different internal transactions that are triggered by a same normal
transaction, then the normal transaction is a malicious one that launches the attack. That’s because two smart
contracts are executing the same algorithm that uses the same random number sources to generate a variable that
can influence the control flow to determine the winner.

Detection result We replayed 10, 296, 519 candidate transactions with our analysis script. After that, 40, 449 normal
transactions are labeled as malicious ones. During this process, 272 malicious smart contracts are detected. We then
group them based on their creators, i.e., EOAs that create these contracts. In total, we get 79 groups. We manually
checked the malicious smart contracts created in each group and found that 74 of them are true positives. In total,
they have initialized 40, 358 normal transactions to attack 95 victim smart contracts, which includes various gambling
games. Table-I in the link 11 shows the detailed information of victim contracts and the false positives.

5.3 Type-II Input: A Reported Suspicious Transaction

Besides the victim contract, an analyst may receive the information that a malicious transaction is attacking a smart
contract. Though there may exist partial information of the attack, the details of the attack are unknown.

11https://github.com/Anonymouspaper146/SP2021fallsubmission

14

0x969837...

Attack

Launcher

0xf35e2cc8...

0x304a55...

Child

DAO

0x914d1b...

Reward

Account

0xbb9bc2...

DAO

0xd2e16a...

Reward

Account

0xc0ee9db...

Malicious

Contract

0. CALL

ETH: 138.27

0x625e847d

Depth: 0

1. CALL

ETH: 138.27

Depth: 1

2. CALL

splitDAO

Depth: 1

3. CALL

ETH:258.05

createToken-

Proxy

Depth: 2

4. CALL

Depth: 3

5. CALL

accumulated-

Input

Depth: 2

6. CALL

accumulated-

Input

Depth: 2

7. CALL

PayOut

Depth: 2

8. CALL

ETH: 2.22e-8

Depth: 3

9. CALL

reward-

Account

Depth: 4

10. CALL

splitDAO

Depth: 4

11. CALL

ETH:258.05

createToken-

Proxy

Depth: 5

12. CALL

Depth: 6

13. CALL

accumulated-

Input

Depth: 5

14. CALL

accumulated-

Input

Depth: 5

15. CALL

PayOut

Depth: 5

16. CALL

ETH: 2.22e-8

Depth: 6

17. CALL

reward-

Account

Depth: 7

18. CALL

splitDAO

Depth: 7

19. CALL

ETH:258.05

createToken-

Proxy

Depth: 8

20. CALL

Depth: 9

Figure 9: The dynamic call graph of a suspicious transaction that exploits the DAO smart contract. We use four lines
to describe an internal transaction: 1. Serial number and the opcode to trigger an internal transaction; 2. Transferred
Ether, null means no Ether transferred; 3. Invoked function (we search the name from the 4byte function signature
database [20]), null means that the input data is empty; 4. EVM stack depth. (Square: EOA, Circle: smart contract;
Grey Box: attacker, White Box: victim;)

5.3.1 Understand the Attack

Attackers leveraged the re-entrancy vulnerability to launch the attack towards the DAO smart contract and stole 3.6
million Ether [48]. In this following, we will elaborate on the process to understand the attack by leveraging a reported
transaction 12. Then we will leverage the gained knowledge to detect more re-entrancy attacks.

Understand suspicious transactions The input is a reported transaction, e.g., from a public forum. An analyst
needs to understand how the attack works.

We construct a dynamic call graph in Fig.9. The serial numbers of transactions are in chronological order. The 0th
transaction is a normal transaction, and others are internal transactions triggered by the normal transaction. For better
illustration, we only use the first 20 internal transactions to draw the graph. The actual number of internal transactions
is 185.

By analyzing this graph, we can find two distinct features of transactions that launch the attack. First, there exists a
loop in the graph. This is reasonable since the call to the fallback function that further invokes the vulnerable contracts
will create a loop in the call graph. For instance, internal transactions 2, 7, and 8 create a loop that starts from and
ends at the malicious contract (0xc0ee9db). Second, there should exist a special smart contract called reentry point,
which is the smart contract that will be invoked again before its previous invocation completes. For instance, the DAO
contract (0xbb9bc2) is a reentry point, since the EVM stack depths of internal transactions (index 3 to 9) are all bigger
than internal transaction 2. That means before an invocation to the DAO contract 0xbb9bc2 (internal transaction 2)
returns, another invocation (internal transaction 9) to the same contract happens.

5.3.2 Detect more attack instances

After understanding the re-entrancy attack, we detect more attack instances.

Locate candidate transactions According to the gained knowledge of the attack in the previous step, we use the
following two rules to locate candidate transactions. We label a normal transaction as a candidate when it satisfies the
following two conditions.

120xfb6526b62f0a4627543cba59a24b9790d0f53ecd841b0adc6ba0026cadf77715

15

1 f u n c t i o n doWithdraw (address from , address to , uint256 amount) i n t e r n a l {
2 // only use in emergencies!

3 // you can only get a little at a time.

4 // we will hodl the rest for you.

5
6 r e q u i r e (amount <= MAX WITHDRAWAL) ;
7 r e q u i r e (b a l a n c e s [from] >= amount) ;
8 r e q u i r e (w i t h d r a w a l C o u n t [from] < 3) ;
9

10 b a l a n c e s [from] = b a l a n c e s [from] . sub (amount) ;
11 // reentry point

12 t o . c a l l . va lue (amount) () ;
13 w i t h d r a w a l C o u n t [from] = w i t h d r a w a l C o u n t [from] . add (1) ;
14 }

Figure 10: The code snippet of HODLWallet.

1. First, internal transactions triggered by this normal transaction create a loop that contains at least one reentry point.
This detects the existence of reentrant function calls.

2. Second, there is at least one internal transaction that involves with the Ether or ERC20 token transfer. This rule is
to remove transactions that do not cause any change to the Ether or ERC20 tokens. They are not real attacks since
no financial benefits are achieved during this process.

Thanks to the query interface provided by the data aggregator, we can easily locate candidate transactions and
remove unrelated ones. In total, we get 209, 227 candidate transactions.

Confirm the re-entrancy attack We further replay candidate transactions to confirm the re-entrancy attack at run-
time. During this process, an analysis script is invoked. Our system first constructs a set of variables that could
influence jump targets of the JUMPI opcode or values of transferred Ether. Thanks to the dynamic taint engine of our
system, we can check whether a variable could influence the control flow by checking the taint tag of the second top
value on the stack (taint.peekStack(1)). For each variable v in this set, we define the callback function for the
SSTORE opcode to monitor whether the variable has been updated after the re-entrant point. If so, we will label the
normal transaction as malicious.

Detection result EthScope locates 209, 227 candidate transactions. After replaying them, our system detected 2, 973
malicious normal transactions in the wild. Attackers are targeting 52 victim contracts, which are shown in Table-II in
the link 13.

We manually analyzed each detected attack. During the analysis, we only consider transactions that have caused
financial loss as true positives (real attacks). Our analysis shows that 46 transactions are false positives, which are
related to 4 victims (marked with * in Table-II). We show a detailed analysis of one false positive in the following.

Our system reported one attack targeting HODLWallet. However it is a false positive since it does not cause
the financial loss. Fig. 10 shows the code snippet of the doWithdraw function. Specifically, the variable
withdrawalCount[from] in line 8 influences the control flow. Also, this variable is updated after the reentry point
in line 13. Thus, our system detects this as a re-entrancy attack. However, the transaction does not cause any financial
loss since the balance balances[from] has been updated in line 10 (before the reentry point.) This is a false positive,
though technically it is still a re-entrancy attack that targets withdrawalCount[from] instead of balances[from].

Since the DAO attack, the security community has paid lots of attentions to detect this vulnerability. However, the re-
entrancy attack still happened recently. Specifically, our system detected 579 re-entrancy attacks after the 9, 200, 000th
block (Jan 2nd, 2020), in which 46 attacks are targeting Lend.Me [29] and 529 attacks are targeting Uniswap [30].
Both of them are DeFi applications. These two attacks caused significant financial loss.

Answers to Q2: With three different types of inputs, our system can help understand the suspicious transactions and
further detect new attacks by locating and replaying candidate transactions. This demonstrates the effectiveness of our
system to facilitate the attack investigation and detect new attack instances.

13https://github.com/Anonymouspaper146/SP2021fallsubmission.

16

Table 6: The comparison between our system and others in detecting the Re-entrancy attacks.
Block Range # of Normal Transactions Tools # of Flagged Contracts # of True Positives

0 - 3, 918, 380 32, 048, 852
ECFChecker [39] 9 5

EthScope 6 6
Flagged Normal Transactions

0 - 9, 000, 000 590, 040, 664
Sereum [47] 245, 519 -
EthScope 2,392 2,347

Flagged Contracts

0 - 8, 180, 000 500, 930, 221
SODA [33] 31 27
EthScope 29 27

Flagged Contracts

0 - 4, 500, 000 78, 141, 322
ÆGIS [38] 7 7
EthScope 7 7

Flagged Contracts

7, 000, 000 - 7, 200, 000 9, 661, 593
TXSPECTOR [28] 30 0

EthScope 1 1

5.4 Comparison with previous systems

In this section, we compare our system with previous ones. We use the result of the re-entrancy attack since most
systems can detect this attack. Table 6 shows the overall result. For each system, we use the same dataset and compare
the detected attacks. The result shows that our system has lower false positives and false negatives.

ECFCHecker ECFCHecker [39] reports nine malicious smart contracts before 3, 918, 380th block (Jun 23, 2017).
Among them, five are true positives and four are false positives. Our system detects six malicious smart contracts.
All of them are true positives. Specifically, five false positives are the same smart contracts detected by ECFCHecker.
One true positive 14 (a malicious smart contract in the 1, 743, 596-th block) is missed by ECFCHecker. Besides, our
system does not flag the four false positives reported by ECFCHecker.

Sereum Sereum [47] has released the evaluation result for the first 9 million blocks on GitHub. It flags 245, 519
normal transactions as re-entrancy attacks. Among the first 9 million blocks, 2, 392 are detected by our system.
Besides, among 2, 392 normal transactions, 12 are not flagged by Sereum.

First, we manually confirm that these 12 normal transactions are true positives. That means they have been missed by
Sereum. Second, for the 243, 139 normal transactions that are flagged by Sereum, we randomly pick up 10 transac-
tions. The manual analysis shows that they are all false positives.

SODA For the first 8.18 million blocks, SODA [33] reports 31 vulnerable contracts, with 5 false positives and 26 true
positives. After double-checking the 31 contracts, we find two of them are false positives 15 and one is true positive 16

(reported as the false positive by SODA.) Therefore, the result is 27 true positives and four false positives. EthScope
detects the same 27 true positives.

ÆGIS ÆGIS [38] reports that seven smart contracts are victims of the re-entrancy attack during the first 4.5 million
blocks. EthScope detects the same victimized smart contracts. However, ÆGIS marks fewer attacks transactions
(1, 118 vs 2, 301) than EthScope. That’s because ÆGIS limits their analysis to the first 10, 000 normal transactions of
each contract to reduce the execution time. Our system does not have this limitation, thanks to the efficient replay
engine.

TXSPECTOR Due to the storage consumption, TXSPECTOR detects the re-entrancy attack from 7, 000, 000th block
to 7, 200, 000th block. It flags 3, 357 normal transactions as malicious and 30 vulnerable smart contracts. Among
them, they manually labeled 17 ones as true positives. EthScope flags one malicious normal transaction 17 and one
victim contract 18. It is the re-entrancy attack to SpankChain [1].

The authors of the TXSPECTOR kindly provide their dataset for us. We manually analyze the 17 smart contracts
that are reported as true positives by TXSPECTOR. However, they are not vulnerable and cannot be victims of the
re-entrancy attack according to our definition (causing a financial loss). Moreover, one true positive (the SpankChain
re-entrancy attack) reported by our system is not detected by TXSPECTOR.

140xf01fe1a15673a5209c94121c45e2121fe2903416
150x72f60eca0db6811274215694129661151f97982e, 0xd4cd7c881f5ceece4917d856ce73f510d7d0769e
160x59abb8006b30d7357869760d21b4965475198d9d
170xb5c10dbb51b00199d4d817488490f129e80832a4fd6dbf209277c11d42873cca
180xf91546835f756da0c10cfa0cda95b15577b84aa7

17

Answers to Q3: Comparing with previous systems, EthScope has lower false positives and false negatives when
detecting the re-entrancy attack.

6 Discussion

The purpose of our system is to detect real attacks. Compared with other static analysis tools [32, 37, 41, 42, 43, 44,
46, 49, 50, 51], our system may miss some vulnerable smart contracts that are not exploited in the wild. Nevertheless,
our system does not intend to replace existing static tools. Instead, these tools are complementary to our system. For
instance, the vulnerable smart contracts reported by them [32, 37, 41, 42, 43, 44, 46, 49, 50, 51] could be one type of
inputs (as shown in Section 5.2) to locate real attacks.

Though the main usage of our system is to perform investigation on attacks that have happened, it can be extended
to conduct real-time detection of attacks. We can continuously monitor the blockchain state and use some heuristics
to locate suspicious transactions. For instance, we can continuously monitor the transactions that are involved in big-
amount Ether transfer. We can mark them as suspicious and understand the purpose of such transactions using our
system. Another example is monitoring the transactions with smart contracts that may potentially be attacked, e.g.,
DeFi applications. That’s because such applications are high-value targets for attackers to make profits. We leave the
real-time detection of new attacks as one of the future work.

Though we have demonstrated the effectiveness of our system, an analyst still needs some public information as
inputs, e.g., victim contracts. One potential direction is to use new techniques, e.g., machine learning algorithms to
automatically locate suspicious transactions. Currently, our system provides a dynamic taint engine to facilitate the
analysis. In the future, we can integrate more components, e.g., dynamic symbolic execution, into the system to ease
the development of analysis scripts

7 Related Work

Data analysis frameworks of Ethereum Chen et al. [36] proposed a graph-analysis based approach to analyze
Ethereum from different aspects, including money flow, account creation and contract invocation. DataEther [35] first
instruments an Ethereum full node to collect data and then uses ElasticSearch [7] to store the collected data. Similar to
EthScope, these systems can be used to locate suspicious transactions. However, they are not capable of introspecting
the execution of smart contracts to understand and detect more attacks.

Static analysis tools of Ethereum smart contracts A number of static analysis tools have been proposed to detect
vulnerabilities of Ethereum smart contracts, including Oyente [43], Mythril [16], Osiris [50], MAIAN [44], Con-
tractFuzzer [41], ILF Fuzzer [40], Securify [51] and ZEUS [42]. These systems only provide a static view of smart
contracts, i.e., whether they are vulnerable or not. They cannot provide a dynamic view of contract interactions (or
transactions), which is useful to analyze and understand attacks. Our system does not intend to replace existing static
tools. Instead, they are complementary to our system. For instance, the vulnerable smart contracts reported could be
one type of inputs (as shown in Section 5.2) to locate real attacks.

Dynamic analysis tools of Ethereum smart contracts Dynamic analysis has been regarded as an effective com-
plement to static analysis for security purposes. ECFChecker [39], Sereum [47], SODA [33] and ÆGIS [38] are
representative tools to analyze Ethereum smart contracts. On one side, both Sereum [47] and ECFChecker [39] focus
on the detection of the re-entrancy attack. On the other side, SODA [33] and ÆGIS [38] provide extensible interfaces
to detect multiple types of attacks. Unfortunately, these tools suffer from the scalability issue. They are not suitable to
perform the large-scale detection.

Pérez et al. [45] presented the first work that adopts the datalog-based approach to analyze vulnerabilities of smart con-
tracts. However, it only analyzes transactions related to the smart contracts flagged by other tools. TXSPECTOR [28]
also relies on datalog and supports customized rules to analyze different types of vulnerabilities and attacks. However,
TXSPECTOR is not scalable to perform the large-scale detection, due to the heavy storage consumption.

Zhou et al. [26] investigated attacks in the wild. They leveraged internal transactions information (named trace in
the paper) and transaction logs to measure six types of vulnerabilities, including call injection, re-entrancy, integer
overflow, airdrop hunting, honeypot, and call-after-destruct. Our system has a different purpose. It focuses on building
a scalable framework to understand and detect different types of attacks.

18

8 Conclusion

In this paper, we present the design of a scalable attack detection framework on Ethereum. It overcomes the scalability
issue of existing systems that it can perform timely attack investigation and detect more attacks. We implement a
prototype named EthScope and solve three technical challenges. The performance evaluation shows that our system
can solve the scalability issue. The result with three different types of information as inputs shows that it can help an
analyst understand attack behaviors and further detect more attacks.

References
[1] “We got spanked: What we know so far.”
[2] “Ethereum official website,” https://www.ethereum.org/, 2014, [Online; accessed May-2020].
[3] “Ethereum white paper,” https://github.com/ethereum/wiki/wiki/White-Paper, 2014, [Online; accessed May-

2020].
[4] “Go ethereum,” https://geth.ethereum.org, 2014, [Online; accessed March-2020].
[5] “Code address and self address in contract type of Go-Ethereum,” https://github.com/ethereum/go-ethereum/

blob/master/core/vm/contract.go, 2015, [Online; accessed Seq-2020].
[6] “ERC20 Token Standard,” https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md, 2015, [Online; ac-

cessed March-2020].
[7] “Open source search & analytics · elasticsearch,” https://www.elastic.co, 2015, [Online; accessed May-2020].
[8] “Query dsl,” https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html, 2015, [Online; ac-

cessed May-2020].
[9] “eip-150,” https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md, 2016, [Online; accessed May-

2020].
[10] “Duktape javascript engine bindings for go,” https://github.com/olebedev/go-duktape, 2017, [Online; accessed

May-2020].
[11] “Kyber network,” https://blog.kyber.network/, 2017, [Online; accessed July-2020].
[12] “4byte tracer,” https://github.com/ethereum/go-ethereum/blob/master/eth/tracers/internal/tracers/4byte tracer.js,

2018, [Online; accessed May-2020].
[13] “debug traceTransaction,” https://github.com/ethereum/go-ethereum/wiki/Management-APIs#debug

tracetransaction, 2018, [Online; accessed May-2020].
[14] “eip-1014,” https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1014.md, 2018, [Online; accessed May-

2020].
[15] “Js tracer,” https://github.com/ethereum/go-ethereum/wiki/Management-APIs#debug tracetransaction, 2018,

[Online; accessed May-2020].
[16] “Mythril,” https://github.com/ConsenSys/mythril, 2018, [Online; accessed May-2020].
[17] “New batchoverflow bug in multiple erc20 smart contracts (cve-2018–10299),” https://blog.peckshield.com/

2018/04/22/batchOverflow/, 2018, [Online; accessed March-2020].
[18] “New ceoanyone bug identified in multiple crypto game smart contracts (cve-

2018–11329),” https://medium.com/@peckshield/new-ceoanyone-bug-identified-in-multiple-crypto-/
game-smart-contracts-cve-2018-11329-898cdceac7e0, 2018, [Online; accessed March-2020].

[19] “New proxyoverflow bug in multiple erc20 smart contracts (cve-2018–10376),” https://blog.peckshield.com/
2018/04/25/proxyOverflow/, 2018, [Online; accessed March-2020].

[20] “Welcome to the ethereum function signature database,” https://www.4byte.directory/, 2018, [Online; accessed
May-2020].

[21] “Ethereum Archive Data,” https://infura.io/docs/ethereum/add-ons/archiveData, 2019, [Online; accessed Feb-
2020].

[22] “Ethereum yellow paper,” https://ethereum.github.io/yellowpaper/paper.pdf, 2019, [Online; accessed May-
2020].

[23] “Geth v1.9.0 foundation blog,” https://blog.ethereum.org/2019/07/10/geth-v1-9-0/, 2019, [Online; accessed
March-2020].

19

https://www.ethereum.org/
https://github.com/ethereum/wiki/wiki/White-Paper
https://geth.ethereum.org
https://github.com/ethereum/go-ethereum/blob/master/core/vm/contract.go
https://github.com/ethereum/go-ethereum/blob/master/core/vm/contract.go
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://www.elastic.co
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
https://github.com/olebedev/go-duktape
https://blog.kyber.network/
https://github.com/ethereum/go-ethereum/blob/master/eth/tracers/internal/tracers/4byte_tracer.js
https://github.com/ethereum/go-ethereum/wiki/Management-APIs#debug_tracetransaction
https://github.com/ethereum/go-ethereum/wiki/Management-APIs#debug_tracetransaction
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1014.md
https://github.com/ethereum/go-ethereum/wiki/Management-APIs#debug_tracetransaction
https://github.com/ConsenSys/mythril
https://blog.peckshield.com/2018/04/22/batchOverflow/
https://blog.peckshield.com/2018/04/22/batchOverflow/
https://medium.com/@peckshield/new-ceoanyone-bug-identified-in-multiple-crypto-/game-smart-contracts-cve-2018-11329-898cdceac7e0
https://medium.com/@peckshield/new-ceoanyone-bug-identified-in-multiple-crypto-/game-smart-contracts-cve-2018-11329-898cdceac7e0
https://blog.peckshield.com/2018/04/25/proxyOverflow/
https://blog.peckshield.com/2018/04/25/proxyOverflow/
https://www.4byte.directory/
https://infura.io/docs/ethereum/add-ons/archiveData
https://ethereum.github.io/yellowpaper/paper.pdf
https://blog.ethereum.org/2019/07/10/geth-v1-9-0/

[24] “How to pwn fomo3d, a beginners guide,” https://www.reddit.com/r/ethereum/comments/916xni/how to pwn
fomo3d a beginners guide/, 2019, [Online; accessed May-2020].

[25] “Etherscan,” https://etherscan.io, 2020, [Online; accessed July-2020].

[26] “An ever-evolving game: Evaluation of real-world attacks and defenses in ethereum ecosystem,” in 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, Aug. 2020. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/zhou-shunfan

[27] “Paxos standard,” https://www.paxos.com/pax/, 2020, [Online; accessed July-2020].

[28] “TXSPECTOR: Uncovering attacks in ethereum from transactions,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/zhang-mengya

[29] “Understanding the Lend.Me Attack,” https://hackernoon.com/how-did-lendfme-lose-dollar25-million-to-a-reentrancy-/
attack-an-analysis-091iy32s7, 2020, [Online; accessed May-2020].

[30] “Understanding the Uniswap Attack,” https://blog.openzeppelin.com/exploiting-uniswap-from-reentrancy-to-actual-profit/,
2020, [Online; accessed May-2020].

[31] E. M. Allen Day, “Ethereum in BigQuery: a Public Dataset for smart contract analytics,” https://cloud.google.
com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics, 2018, [Online;
accessed Aug-2019].

[32] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz, and B. Scholz, “Vandal: A scalable
security analysis framework for smart contracts,” CoRR, vol. abs/1809.03981, 2018. [Online]. Available:
http://arxiv.org/abs/1809.03981

[33] T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu, G. Chen, Z. He et al., “Soda: A generic online
detection framework for smart contracts,” in Proceedings of the 27th Network and Distributed System Security
Symposium, 2020.

[34] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and X. Zhang, “An adaptive gas cost mechanism
for ethereum to defend against under-priced dos attacks,” in International Conference on Information Security
Practice and Experience. Springer, 2017, pp. 3–24.

[35] T. Chen, Z. Li, Y. Zhang, X. Luo, A. Chen, K. Yang, B. Hu, T. Zhu, S. Deng, T. Hu, J. Chen, and X. Zhang,
“Dataether: Data exploration framework for ethereum,” in Proceedings of the IEEE International Conference on
Distributed Computing Systems, 2019.

[36] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhang, “Understanding ethereum via graph
analysis,” in Proceedings of the IEEE International Conference on Computer Communications, 2018.

[37] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting ponzi schemes on ethereum: Towards
healthier blockchain technology,” in Proceedings of the 2018 World Wide Web Conference, 2018.

[38] C. Ferreira Torres, M. Baden, R. Norvill, and H. Jonker, “Ægis: Smart shielding of smart contracts,” in Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2019, pp. 2589–2591.

[39] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky, M. Sagiv, and Y. Zohar, “Online
detection of effectively callback free objects with applications to smart contracts,” Proceedings of the ACM on
Programming Languages, vol. 2, no. POPL, pp. 1–28, 2017.

[40] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev, “Learning to fuzz from symbolic execution
with application to smart contracts,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 531–548.

[41] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: fuzzing smart contracts for vulnerability detection,” in
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, 2018.

[42] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety of smart contracts,” in Proceedings of
the 25th Annual Network and Distributed System Security Symposium, 2018.

[43] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts smarter,” in Proceedings of
the 23rd ACM Conference on Computer and Communications Security, 2016.

[44] N. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the greedy, prodigal, and suicidal contracts
at scale,” in Proceedings of the 34th Annual Computer Security Applications Conference, 2018.

[45] D. Pérez and B. Livshits, “Smart contract vulnerabilities: Does anyone care?” CoRR, vol. abs/1902.06710,
2019. [Online]. Available: http://arxiv.org/abs/1902.06710

20

https://www.reddit.com/r/ethereum/comments/916xni/how_to_pwn_fomo3d_a_beginners_guide/
https://www.reddit.com/r/ethereum/comments/916xni/how_to_pwn_fomo3d_a_beginners_guide/
https://etherscan.io
https://www.usenix.org/conference/usenixsecurity20/presentation/zhou-shunfan
https://www.paxos.com/pax/
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya
https://hackernoon.com/how-did-lendfme-lose-dollar25-million-to-a-reentrancy-/attack-an-analysis-091iy32s7
https://hackernoon.com/how-did-lendfme-lose-dollar25-million-to-a-reentrancy-/attack-an-analysis-091iy32s7
https://blog.openzeppelin.com/exploiting-uniswap-from-reentrancy-to-actual-profit/
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
http://arxiv.org/abs/1809.03981
http://arxiv.org/abs/1902.06710

[46] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev, “Verx: Safety verification of smart
contracts,” in Proceedings of the 41st IEEE Symposium on Security and Privacy, 2020.

[47] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting existing smart contracts against re-entrancy
attacks,” in Proceedings of the Network and Distributed Systems Security Symposium, 2019.

[48] D. Siegel, “Understanding The DAO Attack,” https://www.coindesk.com/understanding-dao-hack-journalists,
2016, [Online; accessed Aug-2019].

[49] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “Verismart: A highly precise safety verifier for ethereum smart
contracts,” in Proceedings of the 41st IEEE Symposium on Security and Privacy, 2020.

[50] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in ethereum smart contracts,” in Proceed-
ings of the 34th Annual Computer Security Applications Conference, 2018.

[51] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M. Vechev, “Securify: Practical security
analysis of smart contracts,” in Proceedings of the 25th ACM Conference on Computer and Communications
Security, 2018.

21

https://www.coindesk.com/understanding-dao-hack-journalists

2015/8/7

2016/4/13

2016/12/19

2017/8/26
2018/5/3

2019/1/8

2019/9/15

2020/5/22

(a)

0K

200K

400K

600K

800K

1000K

1

2

3

2015/8/7

2016/4/13

2016/12/19

2017/8/26
2018/5/3

2019/1/8

2019/9/15

2020/5/22

(b)

0K

100K

200K

300K

400K

1

2
3

Figure 11: The trend graph of smart contract creation (a) and self-destruction (b). The y-axes show the total number
of newly created smart contracts and destroyed ones for every ten days, respectively.

9 Appendix

9.1 Type-III Input: Abnormal Blockchain State

Besides the reported victim smart contracts and malicious transactions, an analyst can leverage the data aggregator

to observe the blockchain state and use multiple heuristics to locate suspicious transactions. In the following, we elab-
orate the method of using the number of smart contract creation and self-destruction to locate suspicious transactions,
and the process of understanding these transactions to detect multiple types of attacks.

9.1.1 Understand the attack

Some attacks may lead to abnormal blockchain state, which can be used by an analyst to perform the detection. In the
following, we illustrate how our system leverages the abnormal blockchain state to detect attacks.

Locate suspicious transactions Attackers often create malicious smart contracts to automatically launch attacks.
After that, they often destroy these contracts to save cost or hide traces. For instance, attackers of the bad randomness
attack create a large number of smart contracts to lunch the attack and destruct them afterwards (Section 5.2).

Inspired by this observation, we draw a trend graph of smart contract creation and self-destruction shown in Fig. 11.
From the figure, we can find that there exist several abnormal points where the numbers of new smart contracts (and
destroyed ones) are much larger than those of the neighbors (marked with red circles in the figure).

These three abnormal points appear in blocks ranging from 2, 000, 000th to 3, 000, 000th, 6, 500, 000th to 7, 500, 000th
and 8, 900, 000th to 10, 110, 000th, respectively. We use data aggregator to lookup transactions and accounts that
create or destroy these smart contracts and label them as suspicious.

Understand suspicious transactions After analyzing suspicious transactions, we observe two types of attacks and
an automated arbitrage trading behavior. We illustrate them in the following.

• Suicide bomb DoS attack. From blocks ranging from 2, 000, 000 to 3, 000, 000, there exists a smart contract 19

that contributes 34, 148 and 33, 980 times of smart contract creation and self-destruction, respectively. The only
functionality of the newly created smart contract is to self-destruct itself, and transfer its balance (1 Wei or 0 Wei)
to a non-existent account.
We take a transaction 20 as an example to illustrate its purpose. Fig. 12(a) shows the dynamic call graph. The EOA
(0x61d5ec) first invokes (index 0) a smart contract (0x7c2021) to create (index 1) a very simple contract (0x914374).
Its functionality is to self-destruct itself, and transfer its balance (0 Wei in this example) to a non-existent account.
For simplicity, we only draw the first ten transactions, and this normal transaction actually triggered 320 times of
self-destruction.
It is worth noting that, the destruction of a smart contract actually happens only when the execution of the normal
transaction that initiates these internal transactions finishes (index 0). Thus, the contract 0x914374 can execute the
190x7c20218efc2e07c8fe2532ff860d4a5d8287cb31
200xa02be5a3f2687b68e4643e73d26c4661dc66fb3550aa34fc9- 6abfa4bcb0bf8b6

22

0x61d5ec
…

0x7c20
21 …

0. CALL

0x9143
74…

1. CREATE 2. CALL

0x4bf3d9
…

3. SELFDESTRUCT

4. CALL

0x4bf3d9
…

5. SELFDESTRUCT

6. CALL

0x97e7b3
…

7. SELFDESTRUCT

8. CALL

……

9. SELFDESTRUCT

0xd48386
…

0x7c20
21 …

0. CALL

0xe942
8d…

0xf046
ee…

……

1. CREATE

SEN
0xbd65

f6…

2. CALL
transfer

3. CREATE

4. CALL
transfer

0xd48386
…

2,019.75
SEN

2,019.75
SEN

5. CREATE

6. CALL
transfer

2,019.75
SEN

(a) (b)

Figure 12: The dynamic call graph of a suicide bomb DoS attack and an ERC20 airdrop hunting attack. Square: EOA,
Circle: smart contract; Grey Box: attacker, Red Box: victim; Solid Line: transaction, Dotted Lines: ERC20 token
transfer; The number before the opcode is the execution order for each opcode.

Trade Bot
0x801828…

Uniswap
0xc040d5…

Kyber
0x65bf64…

0.03474 Ether

6.02048 PAXs

6 PAXs

1

2

0.03821 Ether

Trade Bot
0x801828…

Figure 13: The trades in an arbitrage (normal transaction). The number in circle represents the execution order.

opcode SELFDESTRUCT multiple times before it is actually self-destructed. Moreover, according to the definition
of the opcode SELFDESTRUCT, it will create a new EOA account (Section 2.1), without paying for the 25, 000 gas
charge 21, which is the gas needed to create a new account. These newly created accounts will consume lots of
storage resources on the blockchain. This is called the suicide bomb DoS attack [34].

• Airdrop hunting attack. In blocks ranging from 6, 500, 000 to 7, 500, 000, there is a smart contract account 22 that
contributes 501, 919 creation and 526, 079 times of smart contract creation and self-destruction, respectively. We
randomly pick a normal transaction 23, and draw the dynamic call graph in Fig. 12(b) to help us understand its
purpose. As shown in the graph, the smart contract (0x7c2021) continually creates new smart contracts to transfer
2, 019.75 SEN tokens to the EOA (0xd48386) that initiates this transaction. The SEN token has an aggressive
marking strategy, which will reward a few tokens for every new account that has made a transaction with SEN. This
strategy is adopted by many token smart contracts. The purpose of creating so many new smart contracts is abusing
this strategy to obtain rewards. Destroying these new smart contracts is not necessary but can save cost. This kind
of rewards is usually called airdrop reward. Therefore, this attack is called airdrop hunting attack.

• Automated arbitrage trading. In blocks ranging from 8, 900, 000 to 10, 110, 000, there is a smart contract
account 24 that contributes 510, 390 creation and 537, 992 times of smart contract creation and self-destruction,
respectively. After analyzing the suspicious transactions, we find this is a trade bot, which buys and sells digital
assets among decentralized exchanges using arbitrage. Though this cannot be considered as an attack, this still
shows the capability of our system to understand the behaviors of smart contracts.

21This vulnerability has been fixed in the EIP150 [9] hard fork of Ethereum
220xe9428d4a341ac20e9f2e6b95b12c9ad52733fcd9
230x5a5fb2f3d097c44d0454612404097eb51f0025bf86c5f25e1902639e139b944b
240x8018280076d7fa2caa1147e441352e8a89e1ddbe

23

Fig. 13 shows the digital assets transfer in an arbitrage (normal) transaction 25, which includes two trades. The trade
bot (0x801828) first exchanges 6.02048 PAXs [27] with 0.03474 Ether from Uniswap [30], and then exchanges
0.03821 Ether with 6 PAXs from Kyber [11]. As a result, the trade bot gets 0.003 Ether and 0.02 PAXs due to the
exchange rate differences between the two exchanges Kyber and Uniswap.
We further analyze the purpose of the self-destruction of smart contracts. The trade bot first created lots of smart
contracts in advance with lower gas price. When performing arbitrage, attackers will set up a higher gas price so that
their trade transactions have a higher priority when being packed. That’s because miners tend to pack transactions
with higher gas price. After that, they self-destruct the smart contracts to receive the returned gas at a higher gas
price since the current gas price used in the transaction is high.

9.2 Database Indices

Table 7 shows the database indices used in data aggregator. It is similar with the schema of the relational database.

250x3cf41ad4f703fe61368139b8482e75de53a335b9d76039ca071530bb5292b0c7

24

Table 7: ElasticSearch Indices

Index Name Field Field of
Nested Field

Field of
Nested Field of
Nested Field

Field of
Nested Field of
Nested Field of
Nested Field

Block

DifficultyR

ExtraData
GasLimitR

GasUsed
HashR

MinerR

NumberR

TimestampR

TxnCount

Transaction

CallFunctionR

ConAddress
CumGasUsed
FromAddressR

GasLimitR

GasPriceR

GasUsedR

GetCodeListR

HashR

IntTxnCount
NonceR

Status
ToAddressR

TxnIndex
ValueR

InternalTxns

CallFunction
CallParameter
ConAddress
EvmDepth
FromAddress
GasLimit
Output
ToAddress
TxnIndex
Type
Value

Logs
Address
Topics
Data

ReadCommittedStateR

Address
Balance
CodeHash
CodeSize
Nonce

Storage Key
Value

ChangedState

Address
Balance
Nonce

Storage Key
Value

Code

Number
Timestamp

Transaction

Hash
TxnIndex
InputR

ContractR
Address
Hash
Code

State

Number
Timestamp

Transaction

Hash
TxnIndex
Create
Reset
SuicideR

R

: fields that are necessary for replaying transactions.

25

	1 Introduction
	2 Background
	2.1 Ethereum Accounts
	2.2 Transactions
	2.3 Ethereum State
	2.4 Smart Contracts

	3 System Design
	3.1 Technical Challenges
	3.2 Overall Design

	4 Implementation Details
	4.1 Data Aggregator
	4.2 Replay Engine
	4.3 Instrumentation Framework

	5 Evaluation
	5.1 Performance and Scalability
	5.1.1 Storage Use
	5.1.2 Query Transactions
	5.1.3 Replay Transactions

	5.2 Type-I Input: A Victim Contract
	5.2.1 Understand the Attack
	5.2.2 Detect more attack instances

	5.3 Type-II Input: A Reported Suspicious Transaction
	5.3.1 Understand the Attack
	5.3.2 Detect more attack instances

	5.4 Comparison with previous systems

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Appendix
	9.1 Type-III Input: Abnormal Blockchain State
	9.1.1 Understand the attack

	9.2 Database Indices

