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Abstract

Ethereum is an emerging distributed computing platform
that supports a decentralized replicated virtual machine at a
large scale. Transactions in Ethereum are specified in smart
contracts, disseminated through broadcast, accepted into the
chain of blocks, and then executed on each node. In this new
Dissemination-Consensus-Execution (DiCE) paradigm, the
time interval between when a transaction is known (during
the dissemination phase) to when the transaction is executed
(after the consensus phase) offers a window of opportunity to
accelerate transaction processing through speculative execu-
tion. However, the traditional speculative execution, which
hinges on the ability to predict the future accurately, is inad-
equate because of DiCE’s many-future nature.

Forerunner proposes a novel constraint-based approach
for speculative execution on Ethereum. In contrast to the
traditional approach of predicting a single future and de-
manding it to be perfectly accurate, Forerunner speculates on
multiple futures and can leverage speculative results based
on imperfect predictions whenever certain constraints are
satisfied. Under these constraints, a transaction execution
is substantially accelerated through a novel multi-trace pro-
gram specialization enhanced by a new form of memoization.
The fully implemented Forerunner is evaluated as a node
connected to the worldwide Ethereum network. When pro-
cessing 13 million transactions live in real time, Forerunner
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achieves an effective average speedup of 8.39× on the trans-
actions that it hears during the dissemination phase, which
accounts for 95.71% of all the transactions. The end-to-end
speedup over all the transactions is 6.06×. The code and data
sets are publicly available.
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1 Introduction

By introducing the concept of blockchain-based smart con-
tract [99], Ethereum [109] represents an emerging decen-
tralized computing paradigm that implements a new form
of a replicated state machine in an open network with no
centralized trust. In this new model, participating nodes first
broadcast their transaction requests to the network in the
dissemination phase. The nodes then decide the next chained
blocks of transactions in the consensus phase. Each node in
the network executes the transactions following this same
chain of blocks in the execution phase. Transaction execution
is guaranteed to be deterministic in this model, which en-
sures that all nodes in the network remain consistent when
executing the same sequence of transactions from the same
initial state. There are inherent sequential dependencies in
this Dissemination-Consensus-Execution (DiCE) model: a
node can execute a block of transactions only after the com-
pletion of the consensus phase for this block; a node cannot
start participating in a new consensus phase until it has
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completed executing the transactions in the current block.
Transaction execution is on the critical path of creating the
next block because it does the real work in the state machine
to compute the resulting state of the current block, which is
needed both for verifying the current block and for construct-
ing the next block [111]. If this bottleneck can be alleviated,
the system can be configured to process more transactions
within the same time window for each execution phase (i.e.,
to pack more transactions into each block without increasing
the block interval), resulting in throughput increase. Note
that, this approach does not require any change to the con-
sensus phase/algorithm, or require increasing the latency
(i.e. block interval).

Also inherent in the DiCE model, transactions are known
in the dissemination phase, but only executed after the con-
sensus phase, when the context of its execution has been
determined. This gap creates an opportunity for speculative
pre-execution before the execution phase in order to accel-
erate the actual execution in the phase. Such speculative
pre-execution also effectively introduces parallelism in the
otherwise sequential execution of transactions because spec-
ulation for different transactions can run concurrently. The
effectiveness of traditional speculative execution hinges on
the ability to predict the future accurately. Accurate predic-
tion is particularly challenging in the many-future environ-
ment of the DiCE model, where nodes across a wide-area net-
work communicate asynchronously, leading to inconsistent
observations of the system, and the result of the consensus
phase is highly non-deterministic by its decentralized nature.
For example, in Ethereum, some of the parallel futures can
be directly observed as temporary forks on the blockchain1.

Although speculative execution has been applied to many
other transaction processing systems [3, 39, 40], the unique
many-future challenge in DiCE systems calls for new specu-
lative execution techniques. In this paper, we present Fore-
runner, which takes a radically different constraint-based
approach to speculative transaction execution in the DiCE
model. Rather than predicting a single future, Forerunner
speculates on multiple futures. Rather than relying on the
prediction to be perfectly accurate, Forerunner only requires
that the reality satisfies the same set of constraints with a pre-
dicted future so that a specialized fast-path program, synthe-
sized based on that future, can be used to produce the same
execution results as the original transaction in the execution
phase, but do so significantly faster. The key to constraint-
based speculative execution in Forerunner is a novel trace-
based speculative program specialization [30, 56, 76] tech-
nique, augmented with a form of memoization [29, 36, 62].
In particular, in the speculation phase, Forerunner executes

1As of April 6 of 2021, 8.4% of all the successfully mined and propagated

blocks are on those temporary forks [110].Note that many more potential

forks (futures) did not have the chance to finish their mining process and

cannot be directly observed.

a transaction on speculated contexts to obtain traces, simpli-
fies the program significantly based on the execution path of
each trace, gathers all the constraints that need to be satis-
fied for the transaction to follow exactly the same path, adds
the shortcuts to skip memoized computation, and merges
all the paths into a structure called Accelerated Program, or
AP. In the execution phase, an AP first checks which of the
constraint sets is satisfied, and then executes the correspond-
ing fast-path program. Both the constraint checking and the
fast-path execution can take the shortcuts to skip most of the
computation. For the small chance of non-satisfaction, the
original transaction execution is triggered.

We have fully implemented Forerunner for Ethereum and
developed speculative program specialization on Ethereum
VM (EVM) bytecode. We evaluated Forerunner as a node
connected to the worldwide Ethereum network, processing
real-time live traffic. This means not only that all the transac-
tions and blocks were real and complete, but also the timings
were real (i.e., all speculative pre-executions were done in
real-time between the dissemination and the execution of the
transactions). The evaluation results showed that Forerunner
achieved an effective average speedup of 8.39× in the execu-
tion phase over the transactions it heard during the dissemi-
nation phase. These transactions accounted for 95.71% of the
transactions actually packed into the official blocks. Taking
unheard transactions into account, Forerunner’s end-to-end
speedup was 6.06×. This accelerated execution capability
in the execution phase will give a realistic opportunity to
increase Ethereum’s throughput in its foundational layer.

2 Background and Motivation

Ethereum implements a replicated state machine in
Ethereum Virtual Machine (EVM) [111] on a blockchain.
Transactions on Ethereum can invoke code specified as a
smart contract, which runs in EVM and makes changes to
Ethereum’sworld state [111] (or state for brevity). Ethereum’s
smart contracts are quasi-Turing-complete [111] and can (re-
cursively) send messages to other contracts to invoke their
code during the execution of a single transaction. This en-
ables user-defined stateful applications, which can interact
with each other, to run on Ethereum. One transaction can
therefore trigger arbitrarily complex code execution as long
as the total amount of computation, measured in the unit of
gas [111], does not exceed a specified limit2 in the Ethereum
protocol.

The DiCE distributed computing model. Ethereum ex-
emplifies a new paradigm of distributed computing that we
refer to as Dissemination-Consensus-Execution (DiCE). In a
dissemination phase, any Ethereum node can propose trans-
action requests and broadcast the requests to the Ethereum’s

2The gas limit of a block is collectively controlled by all the miners in a

decentralized way. Each transaction also has a sender-specified transaction

gas limit to guard against run-away code or unexpected long execution.
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Figure 1. The DiCE (Dissemination-Consensus-Execution)
distributed computing model.

×106

0

3

6

9

12

15

Jul-2015 Jul-2016 Jul-2017 Jul-2018 Jul-2019 Jul-2020

G
a
s

Throughput (gas used per block)

Block size (gas limit)

Figure 2. Ethereum’s block size and throughput

P2P network. Each Ethereum node in the network propagates
the requests and caches them in its local pending transaction
pool. In a consensus phase, any node, acting as a miner, can
validate and pack3 an ordered list of pending transactions
into a new block, and run the Proof-of-Work (PoW) [69, 111]
consensus algorithm, competing to add the new block to
the chain. Once a new block is created and broadcast to the
network, all the other nodes validate the block and execute
the transactions in the block, before they can start working
on the next block.

Transaction execution on the critical path. Although
dissemination, consensus, and execution of transactions hap-
pen in a decentralized and concurrent fashion, the critical
path of the Ethereum system consists of repeated cycles
of consensus and execution, where (i) execution of transac-
tions in a block must follow the creation of this block in the
consensus phase, (ii) a new consensus phase for the next
block can start only after the execution of the current one
completes, and (iii) the transactions in a block must also be
executed in sequence to ensure the sequential semantics of
the blockchain state changes (Figure 1). In other words, in
the DiCE model, no matter what happens (e.g., PoW [111]
or even after the transition to PoS [107]) in each consensus
phase, the actual transaction processing happens only in
the limited time window of each execution phase. Thus, the
number of transactions that can be executed in each window
determines the system throughput.

Accelerated transaction execution can enable the block
size to be increased for higher throughput. Historically, as
the performance of the commodity hardware (e.g., CPU and
SSD) and the global Internet improve over time, Ethereum
has gradually raised its block size (gas limit) to allow more

3Technically speaking, packing a transaction into a block also requires

executing it. However, in a Proof-of-Work (PoW) blockchain, except in

extreme conditions, the packing efficiency is not the bottleneck of the

system, which do not need to happen on the critical path of the miners. We

therefore omit such details in the rest of the paper.

transactions to be executed within each block-time interval.
However, as Figure 2 shows, the increased block size (i.e.,
the dashed line) is saturated by the fast-growing through-
put (i.e., the solid line), suggesting a strong demand for fur-
ther throughput increase. Although higher throughput can
be obtained by trading latency or security strength [106],
changing the consensus assumption [4, 7] or the transaction
processing model [31], transaction execution acceleration
addresses the core performance problem orthogonal to all
these aspects, and therefore a fundamental technology with
full backward-compatibility. The throughput gains can be
multiplied together if these approaches are combined prop-
erly.

The opportunity for speculation. On Ethereum, dissem-

ination happens continuously and asynchronously alongside
the consensus and execution cycles. Transactions are known
to Ethereum nodes in the dissemination phase, but only exe-
cuted after the consensus phase, when the context for their
sequential execution is determined. On today’s Ethereum,
the time interval between hearing a transaction and execut-
ing it on a node typically ranges from several seconds to
several minutes. It creates an opportunity for speculative
pre-computation4, off the critical path, before the execu-
tion phase in order to accelerate the actual computation5,
on the critical path, in the execution phase. Note that the
length of a single consensus cycle is usually not a limit-
ing factor for pre-computation because the dissemination-
to-execution window for many transactions span multiple
consensus-execution cycles6 and speculation for indepen-
dent transactions can run in parallel.

The curse of many-future. Any transaction on Ethereum
executes in a context, which is determined only after the
transaction is packed into a block. A traditional speculative
execution technique, such as CPU’s branch prediction, pre-
dicts one execution context, pre-computes the code against
this context, and can accelerate the execution when the pre-
diction is accurate.

The key challenge for speculative transaction execution
on Ethereum is that, due to the inherently decentralized and
non-deterministic nature of the DiCE model, a transaction
usually has many possible future contexts. None of them
has a dominant probability, thereby making the prediction
accuracy impossible to be sufficiently high in reality. For
example, in a decentralized system like Ethereum, by design,
the consensus algorithm “selectsž the miner for a block prob-
abilistically, with no miner having a dominating probability
of being chosen. And nodes (miners) receive transaction

4Pre-computation does not compete for node resources with mining as the

former runs on CPUs and the latter on GPUs or ASICs.
5This does not include operations, such as signature verification, which

could be done in advance without speculation.
6Precomputation can thus not only overlap with consensus, but also with

the execution of other transactions.
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requests in different orders, make their own, non-uniform,
decisions in packing transactions into blocks (e.g., in terms
of which transactions to include and in which order), and
do so with respect to their own local state (e.g., their local
clocks for timestamps), all leading to possibly many different
futures for each transaction.

3 Constraint-based Speculative Execution

The challenge of many-future in transaction execution on
Ethereum, inherent in the DiCE model, calls for a new ap-
proach to speculative execution that should no longer depend
on perfect predictions for acceleration. We therefore propose
a new constraint-based approach to speculative execution,
which proceeds in two phases. In the speculation phase,
which is off the critical path, we execute the transaction in
one or more future contexts to produce, conceptually, a set of
constraints and a specialized fast-path program. In the trans-
action execution phase (on the critical path), when the actual
context is determined, we check whether the constraints are
satisfied in this context, execute the fast-path program when
satisfied, and fall back to a full, original execution otherwise.

Leading to constraint-based speculative execution is the
key observation that the execution of a transaction in a spe-
cific context can be (partially) harvested even when the ac-
tual context is different from the one speculated. Constraint-
based speculative execution must demonstrate its value by
accelerating the actual transaction execution, despite the
overhead of checking the constraints, the cost of fast-path
execution, and the penalty when constraints are not satisfied.
Moreover, generating the constraints and fast paths should
be fast enough so that they are available before transactions
are executed for real inside the execution windows.

For correctness, constraint-based speculative execution
ensures that, when the constraints are satisfied in the actual
context, the execution of the specialized fast-path program
in the actual context is guaranteed to produce the same re-
sult as the original transaction execution in the context (and
hopefully do so significantly more efficiently). The effective-
ness of constraint-based speculative execution hinges on (i)
the probability of the constraints being satisfied and (ii) the
efficiency gain of the specialized fast-path program.

Constraint-based speculative execution can be viewed
as a generalization of the traditional speculative execution,
where the constraints are simply reduced to a perfect match
of the context and the fast-path program is simply reduced
to committing the pre-computed results. In this generalized
form, we allow a spectrum of choices to find an optimal
point that balances the probability of a matching and the
efficiency of the fast path, opening the door to a highly
effective speculative execution solution for Ethereum.

Forerunner’s design highlights. Forerunner provides an
existence proof that such a generalized form of speculative
execution can be profitable in a real system such as Ethereum.

The key design choice is to identify constraints that are
highly likely to be satisfied by the actual contexts (i.e., cov-
erage), while offering opportunities for specialization and
acceleration (i.e., speedup). Forerunner chooses constraints
that assert equivalence about the control flow and the data
dependencies in transaction execution, which we name CD-
Equiv. More precisely, under the CD-Equiv constraints, a
transaction executes the same sequence of instructions. And
for the instructions that access data in variable locations or
of variable sizes, their cross-instruction data dependencies
are also the same.

In this case, Forerunner can run a significantly more effi-
cient specialized fast-path program, compared to the original
program, because the CD-Equiv constraints of executing a
fixed path with known data dependencies make effective
code specialization and optimizations possible. It also en-
ables the analyses and transformations to be light-weight
enough to finish within the time budget. By relaxing the
criteria from a perfect match on the context to that of en-
suring CD-Equiv, Forerunner increases the probability of
leveraging speculation.

Forerunner further incorporates a series of optimizations
to improve efficiency. First, Forerunner adds shortcuts to
both the logic of checking the constraints and the specialized
fast-path program, using a form of memoization, to help
improve its efficiency in certain cases. This ensures that some
segments of the computation will be skipped appropriately
if the values that decide the execution of those segments
are the same as seen in the speculation, even in a different
context. In the best case where the speculation predicts the
whole context perfectly, the constraint-checking and fast-
path execution with shortcuts can be almost as efficient
as in the traditional speculative execution, with minimal
overhead.

Second, Forerunner develops an efficient data structure
to make it easy to merge multiple instances of constraint-
checking logic into one. Those multiple instances are created
from speculations on different speculated contexts, leading
to different fast-path executions. This allows Forerunner to
create multiple sets of constraints by speculating on multiple
future contexts, thereby increasing the probability of one
set of constraints being satisfied and some fast-paths being
taken, without introducing noticeable additional overhead
in constraint checking.

Finally, Forerunner leverages the effect of caching and
prefetching from pre-computation. This saves the execution-
phase I/O time considerably, because the states accessed and
internal data structure constructed during speculation are
likely to be the same for the same transaction.

4 Forerunner Architecture and Design

In this section, we describe the architecture of Forerunner
and how it is designed to enable constraint-based speculative
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Figure 3. The architecture of Forerunner

execution, with the help of a concrete running example to
illustrate the key concepts and mechanisms.

4.1 The Architecture of Forerunner

Forerunner is built as a new component for Ethereum, as
shown in Figure 3. It taps into the existing components
(shown as light grey boxes) of an Ethereum node to access
the blockchain, its state, the pending transactions, and so on.
Forerunner takes over the transaction execution responsi-
bility from the block-processing component to implement
speculative execution for acceleration.

The lower portion of Figure 3 zooms into Forerunner’s in-
ternals. It consists of three major components: amulti-future

predictor, a speculator, and a transaction execution accelerator.
The first two, together with a state prefetcher, operate off the
critical path. The multi-future predictor drives the pipeline:
it monitors the blockchain and the pending transaction pool
to identify transactions that are likely to be packed into a
block in the near future, predicts and constructs possible
future contexts for these transactions, and passes the trans-
actions with their contexts to the speculator. The speculator
pre-executes the transactions in the predicted contexts with
runtime tracing to record the context variables read (which
form a read set) and written (which form a write set), the
dependencies, and the execution traces. Based on each trace,
the speculator uses program specialization and memoization
to synthesize highly optimized fast-path code guarded by
constraint checking code to ensure CD-Equiv. We call the
result an accelerated program (AP).

The read sets are passed into a prefetcher, which preloads
these variables so that the expensive disk I/O, decoding, and
key-value lookup operations can be carried out in advance,
off the critical path.

When the execution phase starts, every transaction ex-
ecutes in its actual, fully determined context by the trans-
action execution accelerator. The accelerator runs the AP

corresponding to the transaction. The AP checks whether
any set of the guarding constraints is satisfied. If so, the
fast-path execution is performed for the corresponding trace.
Otherwise, the accelerator falls back to the execution of the
general program.

4.2 Example: Price Oracle on Ethereum

For illustration purposes, we construct an example based on
price oracle [103]. Price oracles play an infrastructural role
in the decentralized finance (DeFi) [14] ecosystem, which is
one of Ethereum’s most popular application domains.

A price oracle is a feed of real-world trading prices of an
asset (e.g., the price of ETH, the native cryptocurrency of
Ethereum), which allows the information (from the outside
world) to be consumed by the decentralized applications on
the blockchain in a reliable way. For example, smart con-
tracts, such as those for decentralized exchanges, can query
off-chain prices of assets and facilitate a swap of two digital
assets at their fair exchange rate on-chain.

s1 contract PriceFeed {

s2 // persistent state variables of the contract

s3 uint256 public activeRoundID;

s4 mapping(uint256 => uint256) public prices;

s5 mapping(uint256 => uint256) public submissionCounts;

s6 // method to submit a price for each 5-minute round

s7 function submit(uint256 roundID, uint256 price) public {

s8 uint256 curTime = block.timestamp;

s9 uint256 curRoundID = curTime - curTime % (5 * 60);

s10 if (roundID != curRoundID) {revert();}

s11 

s12 if (activeRoundID < roundID) {

s13 activeRoundID = roundID;

s14 prices[roundID] = price;

s15 submissionCounts[roundID] = 1;

s16 } else {

s17 uint256 curPrice = prices[roundID];

s18 uint256 curCount = submissionCounts[roundID];

s19 uint256 newSum = curPrice * curCount + price;

s20 uint256 newCount = curCount + 1;

s21 submissionCounts[roundID] = newCount;

s22 prices[roundID] = newSum / newCount;

s23 }

s24 }

s25 // other methods and state variables...

s26 }

Figure 4. The source code of PriceFeed.

PriceFeed: An example smart contract. Figure 4 shows
our example smart contract, PriceFeed, written in Solid-
ity [104]. It is derived and simplified from a real-world price
oracle smart contract [98] deployed on Ethereum. PriceFeed
models a common type of price oracles that brings the off-
chain information about the latest prices of an asset on-
chain by aggregating price submissions from independent
price observers. In particular, for each round of 300 seconds,
PriceFeed aggregates all the price submissions to calculate
an average observed price. The state variable prices, de-
clared in line s4 of Figure 4, stores the mapping from round
ID to computed average prices. All state variables are en-
coded [111] and stored in the persistent storage associated
with a deployed instance of the smart contract.
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Line s7 declares submit(...), the method of our main
interest, with two arguments: roundID and price. A trans-
action is created when a price observer calls the method
to submit a price (price) for a specific round (roundID).
In addition to the state variables and the arguments, the
method can also access the metadata stored in the header
of the block that carries the transaction calling this method;
an example of such metadata is the timestamp of the block
(block.timestamp in line s8), which records the miner’s
local clock time when packing this particular block.

We include in PriceFeed only the representative, core
logic for illustration purposes and omit other details, such as
rewarding the price submitters to incentivize and compen-
sate for their participation.

Tx𝑒 : An example transaction for price submission. At
the top of Figure 5, we show an example transaction, Tx𝑒 , sent
by an observer to submit a price. We highlight the relevant
properties of Tx𝑒 :

• sender : UserA_Addr, the observer’s Ethereum account.
The transaction fee is paid from the account’s balance.

• receiver : PriceFeed_Addr, the Ethereum account that
hosts an instance of the smart contract. It serves as
a container for the code of the smart contract and
the private storage to store the persistent state of the
contract.

• data: a byte array that encodes [111] the ID of the
method (submit) to be called and the arguments
(roundID: 3970300 and price: 1980) passed into it.

• gas price: the amount of transaction fee the sender
is willing to pay per unit of gas, which measures the
amount of computation for the execution of the trans-
action. The transaction fees are paid to theminers, who
tend to prioritize pending transactions with higher
prices when packing transactions in order.

Transaction Tx𝑒 executes in a context that consists of a
block’s header fields and the current Ethereum state, which
is the result of executing all the previous transactions in
the blockchain in sequence. The block header fields acces-
sible through the context include metadata of blocks in the
blockchain; e.g., the timestamp and block number of the block
into which Tx𝑒 is packed. The execution of Tx𝑒 needs to read
the value of timestamp to determine whether the submission
time is within the current round.

Multiple futures of a transaction. Figure 5 shows four of
many possible future contexts (FC1 to FC4) for Tx𝑒 . For each
future context, the figure shows the corresponding block
into which Tx𝑒 is packed and ordered, as well as the read set
(values read) and the write set (values written) of Tx𝑒

7.

The four future contexts are constructed to represent
the common cases of the many-future reality observed on

7For brevity, we omit reads and writes of the balances of the sender and the

block miner, used for transferring transaction fees.
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Figure 5. Four possible future contexts for transaction Tx𝑒

Ethereum. There are two main causes of variations in the
context that a transaction ends up executing in: different
ordering of inter-dependent transactions and different val-
ues in the metadata of the block for the transaction. FC2
deviates from FC1 because Tx𝑒 is ordered differently with
respect to other inter-dependent transactions (e.g., other
price submission transactions that affect the state variables
of prices and submissionCounts on the same roundID).
FC3 differs from FC1 in the timestamp of the block in which
Tx𝑒 is packed into, whereas FC4 is different both in the order
of inter-dependent transactions and in the block timestamp.

All those variations may happen because (i) the arrivals
of inter-dependent transactions are unpredictable; different
nodes may observe different sets of those transactions due
to the asynchronous nature of a gossip-like protocol [22] in
a large, decentralized system; (ii) each node may differ in
which transactions to pack and how to order transactions
when packing a block. Even if transactions are ordered based
on gas prices, ties might be broken differently as their views
on the world may differ8 or they may assign different times-
tamps based on their local clocks; (iii) The PoW consensus al-
gorithm “selects" the miner for a block probabilistically based
on their relative mining power. The security of Ethereum
hinges on the fact that no single miner can dictate the choice
with a high enough probability.

4.3 Synthesis of Accelerated Programs

The workflow of synthesizing an accelerated program is
shown in Figure 6. Given a predicted future context, Forerun-
ner traces the transaction execution with an instrumented

8In fact, it is common to have transactions with the same gas price because

senders tend to take pricing advice from the same helper tools. And as of

this writing, the packing algorithm in the official implementation of the

Ethereum nodes order same-price transactions randomly.
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Figure 7. The EVM instruction trace of Tx𝑒 in FC1 (or FC2
or F3). The corresponding source code line number is anno-
tated on the right (e.g., s7).

EVM, generates the constraints that ensure CD-Equiv to this
execution, and applies program specialization and memoiza-
tion to create fast paths with shortcuts. The same process
can be applied to multiple future contexts to improve cov-
erage, with the resulting constraint sets and fast paths with
shortcuts merged to form the accelerated program.

CD-Equiv is a good choice for coverage because an
Ethereum transaction often traverses the same code path in
different contexts, and the number of different paths taken
is usually small. For example, Tx𝑒 follows the same path in
contexts FC1, FC2, and FC3 (Figure 5). In fact, an execution
in any context that satisfies the following two constraints9:
(i) its block.timestamp is within the range from 3990300
to 3990599; (ii) its activeRoundID equals roundID (3990300)
follows the same path, because the two IF-conditions in lines
s10 and s12 (Figure 4) both evaluate to false.

CD-Equiv also offers significant opportunities for special-
ization and acceleration. With CD-Equiv, the execution of a
transaction can be reduced to the execution of a sequence of
unrolled and inlined instructions with fully-determined data

9Note that these two constraints are all control constraints as no extra data

flow constraints are needed in this simple example.

dependencies, making it easy to apply optimizations such
as constant folding [67], common sub-expression elimina-
tion [16], and register promotion [77]. Moreover, these steps
are combined into a one-pass transformation, running fast
enough on the fly for the speculative execution scenario.

Program specialization with S-EVM. As a preparation
step, when running the transaction on an instrumented EVM
in a predicted future context, Forerunner records the se-
quence of all the executed instructions (i.e., an EVM instruc-
tion trace), the intermediate results (i.e., the inputs/outputs
of the instructions), and the read/write sets of the execu-
tion. Figure 7 is an example EVM instruction trace from
pre-executing Tx𝑒 in FC1 (Figure 5), which consists of 88
EVM instructions.

Forerunner then performs program specialization on the
EVM trace to produce the code for AP as shown in Figure 8.
It first converts the stack-based [81] EVM instructions into
our register-based intermediate representation called S-EVM.
At its core, S-EVM is a highly simplified registered-based
version of EVM. It needs to support only a subset of the EVM
instructions and a subset of their execution semantics neces-
sary for an accelerated program (AP). S-EVM supports, in a
register-adapted form, all the instructions in the categories of
arithmetic, comparison, bitwise logic, SHA3, environmental
information, block information, storage, logging and sys-
tem, as classified by the specification of EVM [111]. Each
S-EVM instruction fulfills only one of the three functional-
ities: read, write, or compute. Because S-EVM is a register-
based VM [81], the EVM instructions dedicated to stack and
memory manipulation are no longer needed in S-EVM. All
the supported EVM instructions are adapted to read from
and write to a global array of registers in S-EVM, instead of
accessing stack and (heap) memory in EVM. For example,
the ADD instruction in EVM adds the top two values on the
stack and replaces them with the result (via push and pop),
whereas its counterpart in S-EVM, v𝑘 = ADD(v𝑖 , v𝑗 ),

10 adds

two values in the 𝑖 th and 𝑗 th registers, and puts the result
into the 𝑘 th register. The resulting simplified and explicit
execution and data dependencies among the instructions are
particularly friendly for the analysis, optimization, transfor-
mation (e.g., for memoization), and execution of accelerated
programs.

10We do not give new names to these S-EVM instructions as they are

otherwise the same as their EVM counterparts.
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Figure 8. Accelerated program of Tx𝑒 synthesized in FC1.
All the variables whose names do not start with v, such as
roundID, &activeRoundID, are constants. The correspond-
ing line numbers in EVM trace and the source code are an-
notated in the left two columns.

The conversion to S-EVM is done in four steps: (i) Com-

plex instruction decomposition, which translates the complex
EVM instructions with multiple functionalities into multi-
ple S-EVM instructions. For example, the EVM instruction
SHA256 (see b44), which reads its input from memory and
hashes it, is decomposed into two instructions: a memory
read instruction and a register-based hashing instruction.
(ii) Stack to register translation [21], which analyzes the im-
plicit data dependencies among EVM instructions caused
by sharing stack and memory, and translates them into a
register-based S-EVM instruction sequence in the single-
static-assignment (SSA) form [19], while keeping the data
dependencies equivalent. (iii) Register promotion, which not
only eliminates all memory accesses by allocating registers
to store the memory values, but also eliminates redundant
context accesses by keeping only the first read from and
the last write to each variable in the context. The memory
read instruction generated at the first step in the previous
SHA256 example will be eliminated in this step. (iv) Control
flow elimination removes all the EVM control-flow instruc-
tions as accelerated programs are constrained to follow a
pre-determined execution path.

After a trace is converted into a sequence of S-EVM
instructions, Forerunner can apply further optimizations,

where constant folding (recursively) removes all the in-
structions that produce constant results and common sub-

expression elimination removes instructions that do dupli-
cated computations. Both are trivial to do because the control
flow and data dependencies among the instructions are fully
determined.

Constraint generation. Accelerated programs must be
guarded with constraints for CD-Equiv. The control con-
straints are assertions to ensure that the execution indeed
follows a specific path at each control-flow change point.
For example, a control constraint, which asserts that a par-
ticular conditional jump is not taken, checks whether the
jump condition is false. Similarly, a constraint, which asserts
that an unconditional jump with a variable target jumps to
a particular position, checks whether the computed jump
target equals a particular value. As the code to compute the
control-flow-impacting jump conditions, jump targets, and
other values (e.g., the target address of an indirect call) is al-
ready in the unfolded instruction sequence, constraint check-
ing can be implemented by inserting special guard [33, 79]
instructions.11 The guard instructions compare these com-
puted values to specific constants (e.g., true/false or target
addresses) and, if not equal, abort the execution to indicate
that a constraint is not satisfied. The guard instructions are
inserted right after each of the values are computed to detect
constraint violation as early as possible. For example, n5 in
Figure 8 is the guard instruction for the first control con-
straint of our running example. It is inserted right after the
instructions corresponding to the IF-condition in line s10,
which checks whether the value of the register v4 is 1. If so,
the constraint is satisfied, and the next constraint checking
instruction (n6) can be executed (the downward arrow from
n5 labelled with value 1). Otherwise, a constraint violation is
detected, which stops the execution from checking the rest
of the constraints (see the rightward else arrow from n5). In
some sense, the guard instructions reintroduce a restricted
form of control flow back into the AP.

The data constraints are for instructions that access data in
variable locations or of variable sizes. For example, the EVM
instructions MLOAD and MSTORE read and write data at a par-
ticular offset of a non-persistent memory [111]. The offsets of
such instructions might not be constants, leading to different
data dependencies in different contexts. A data constraint
asserting the (non-)existence of data dependency between
two such instructions makes the dependencies fixed to en-
able optimizations (e.g., register promotion and common
sub-expression elimination). It is implemented by inserting

11For transaction fee charging, Ethereummeasures the cost of each executed

instruction in the unit of gas [111]. If the gas consumption of a smart

contract invocation exceeds a user-defined budget, the invocation will be

terminated with its effects reverted and the control flow transferred back to

its caller [111]. Thus, we also insert instructions and guards to implement

control constraints that make sure all gas-induced control flow changes are

identical across contexts.
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instructions to compare the computed offsets (or data sizes)
and guard the comparison outcome. Because only simple
value comparison operations are introduced for checking
both the control and the data constraints, constraint check-
ing in general incurs low overhead.

Dead code elimination. After the guards are inserted, all
the instructions whose results do not affect the guards or the
fast-path execution results (e.g., instructions that compute
values only for a branch not taken by this control-flow path)
can be eliminated.

Rollback-free execution. All the instructions that do not
affect any of the guards are moved after the last guard into
the fast-paths. This is to avoid wasting the execution in the
cases where the constraint sets are not satisfied. In particular,
register promotion enables all the state writes to be moved
into the fast-paths, which makes AP execution rollback free;
i.e., when a guard is not satisfied, there is nothing to revert
before the original transaction can execute from scratch,
which saves time on the critical path.

Memoization. We employ a simple variation of memoiza-
tion [29, 36, 62] to create a shortcut of an AP instruction
segment if the read-set variables (registers) of the inputs to
the segment match the values seen during the pre-execution.
The right part of Figure 8 shows an example of the added
shortcuts. The inputs to a code segment are all its referenced
registers that are assigned before it. For example, the inputs
to the segment from n9 to n14 are stored in registers v7 and
v8. They happen to be read-set registers themselves, which
store the current price and the submission count read from
the context (n9 and n10). Two shortcut nodes, m3 and m4, are
added to check whether v7 takes value 2000 and v8 takes
value 4, both remembered from the pre-execution in FC1. If
so, the whole segment can be skipped (the downward transi-
tion arrow from m4 to n15), with the remembered outputs of
segment committed to the registers. Otherwise, the segment
needs to be executed (the leftward else transition arrows).

The outputs of a segment are all the assigned registers that
are referenced by the subsequent instructions. The outputs of
the example segment are stored in v11 and v12. Thus, the re-
membered outputs of the segment, i.e., v11=5 and v12=1996,
are attached to the transition arrow (see the curved box).
Note that the memoized segments may overlap with each
other. For example, there is shortcut node (m5) for the n13-to-
n13 segment, which is a subset of the code segment n11-to-
n14. It is added because, even if the larger segment cannot be
skipped, it is still possible that the smaller can, as it depends
on fewer read-set registers.12 In the best case, if an actual
context perfectly matches FC1, all the AP instructions will be
skipped except for those reading the read-set variables (n1,
n6, n9, n10) and writing the write-set variables (n15, n16).

12A simple heuristic is used to identify eligible segments to memoize and

limit the total number of memoized segments. More refined memoization

heuristics can be interesting future work.
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Figure 9. Accelerated program of Tx𝑒 synthesized in FC4.
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Figure 10.Accelerated Program of Tx𝑒 merged from the syn-
thesized programs in FC1, FC2, FC3, and FC4, with the source
APs of the merged instructions and shortcuts annotated.

AP merging. The APs synthesized from different pre-
executions of the same transaction are composable. When
we further pre-execute Tx𝑒 in FC2, FC3, and FC4, three more
APs are synthesized. As the APs for FC2 and FC3 differ from
the AP for FC1 only in the memoization nodes, we put them
in Appendix A due to the space limitation. Figure 9 shows
the AP for FC4, which traverses a different code path from
the other three.
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As shown in Figure 10, the four APs for Tx𝑒 pre-executed
in FC1 to FC4 can bemerged into one AP. Themerged AP con-
sists of merged constraint sets (i.e., the constraint checking
code), merged shortcuts, and a collection of corresponding
fast-paths. The constraint checking code of different APs can
be merged because any two of them have a non-empty com-
mon prefix. They only diverge at guard instructions, which
correspond to the control flow splitting points. For example,
the AP for FC1 (Figure 8) and the AP for FC4 (Figure 9) di-
verge at the guard instruction at n8 (corresponding to the
IF-statement in line s12). The n8 guard in FC1 requires that
the ELSE-branch be taken, while the same guard in FC4 in-
stead requires that the IF-branch be taken. The two n8 guards
are merged into one as shown in Figure 10. The merged n8

guard serves a dual purpose of checking and case-branching
the constraint sets (e.g., FC1,2,3 vs. FC4). If the guarded
register (e.g., v6) does not take any of the guarded values
(e.g., 0 or 1), a constraint violation is detected, in which case
a full execution of the original transaction in EVM will be
triggered.

When a branch is taken, the subsequent AP execution
will switch to check the remaining constraints, if any, in
the selected sets, and do further case-branching if needed,
until either a violation is detected or a fast-path program
is reached and executed. In our example, if v6 equals 0, the
constraint set derived from FC1 (same as FC2 or FC3) will
be selected and n9 will be executed next (the left transition
arrow labelled with 0), which is the first instruction of the
corresponding fast-path. If v6 equals 1, the fast-path program
synthesized in FC4 (i.e., n17 to n19) will be executed instead.
The case-branching functionality of the guard instructions
is crucial for performance. It makes the time complexity of
executing the merged AP, which combines 𝑁 individual APs,
independent of 𝑁 , thus can handle the many-future situation
nearly as efficiently as a single future.

The shortcut nodes of multiple APs can also be merged.
Similar to a merged guard, a merged shortcut node serves
a dual purpose of memoization and case-branching of con-
straint sets. For example, shortcut node n5 for the n7-to-n8
segment in AP for FC1 (Figure 8) and its counterpart in the
AP for FC4 (Figure 9) are merged into one in Figure 10. It
determines which of the two AP branches (split at n8) to
take based on the value (e.g., 3990000 or 3990300) of the
read-set register v5. Note that the shortcuts are independent
from each other. For example, it is possible that an actual
execution takes the FC3/FC4 branch at the m1-shortcut, and
the FC2 branch at the m3-shortcut. Therefore, the correct
parts of several predicted contexts can be stitched together
to achieve acceleration.

4.4 Predictor and Prefetcher

Multi-future predictor. Forerunner’s predictor leverages
the knowledge about Ethereum to pick transactions likely to

be packed next from the pending pool and construct probable
future contexts for those transactions. The resulting transac-
tions and their contexts serve as inputs to the Speculator. The
predictor consists of the next-block predictor and the context
constructor. The next-block predictor simulates how miners
pack blocks to predict which pending transactions are likely
packed into the next block. It uses two heuristics of the min-
ers: 1) transactions with higher gas prices (transaction fees)
are usually packed into blocks earlier, 2) some miners priori-
tize the transactions from themselves. The strategy is to err
on the side of recall over precision to increase the chance
that transactions are pre-executed before being packed into
blocks, compensated by a capping mechanism to avoid over-
whelming the node with too many pre-executions. It also
collects simple statistics about the block generation process
to predict the block’s header information (e.g., timestamp
and coinbase). The context constructor examines the depen-
dencies among the pending transactions to group those with
dependencies into the same group. The ordered list, denoted
as Tx order in Figure 5, that affects a transaction’s context
is therefore just a list within the transaction’s own group.
The context constructor simulates miner preferences when or-
dering transactions and exposes inherent non-determinism
by enumerating all the possible contexts in a random order
(or does random sampling if there are too many).

The predictor’s strategy is tailored to the packing behav-
iors dictated and incentivized by the Ethereum protocol. As
will be shown later, we have demonstrated that it is feasible
to construct a practical and effective predictor for the latest
version of the protocol as of this writing. Fully addressing
more adversarial situations, such as DoS attacks against the
predictor, may require further work. Preferably, the predic-
tor and revisions to the protocol can be co-designed in the
future if Forerunner gets adopted into the public Ethereum.

State prefetcher. Ethereum’s state consists of key-value
pairs cryptographically indexed by a Merkle-Patricia
trie [99]. Transaction execution on the critical path accesses
the blockchain’s state via StateDB objects, each correspond-
ing to a snapshot of Ethereum’s state. Looking up the value
associated with a key involves iteratively loading StateDB
objects from the disk to decode all the serialized intermedi-
ate nodes from the trie’s root down to the leaf node, which
contains the value. The values and the decoded intermediate
nodes are cached to expedite future lookups. Our prefetcher
utilizes this caching mechanism to reduce substantially the
number of lookups on the critical path by pre-creates Stat-
eDBs to populate the internal caches of the StateDBs with
the values likely accessed on the critical path.

5 Implementation and Evaluation

We have implemented Forerunner in Go [101] Ethereum,
a.k.a. Geth, v1.9.9 [100]. It consists of 34,815 lines of code:
2,482 for the multi-future predictor, 24,836 for the speculator,
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Table 1. Datasets used in our evaluations

Tag† Duration

Block

number

range

Block

Count ‡
Tx count

% of

heard

txs

%(weighted*)

of heard

txs

𝐿1
03/12/2021-

03/22/2021

12024033-

12087152
66173 13079242 93.31% 95.71%

𝑅1
03/12/2021-

03/22/2021

12024033-

12087152
66173 13079242 92.47% 93.28%

𝑅2
02/01/2021-

02/03/2021

11767001-

11780202
13845 2776899 92.24% 91.45%

𝑅3
01/01/2020-

01/05/2020

11566001-

11596913
32274 5932909 95.73% 96.92%

𝑅4
12/09/2020-

12/11/2020

11416001-

11430726
15397 2672694 97.22% 98.15%

𝑅5
10/01/2020-

10/04/2020

10967001-

10991575
25795 4028889 97.59% 97.91%

† 𝐿𝑛 : run in live mode; 𝑅𝑛 : run in replay mode.
‡ Including blocks that are on temporary forks of the main chain.
∗ The percentage weighted by transaction’s baseline execution time.

5,028 for the transaction execution accelerator, 558 for the
prefetcher, and the rest 1,911 lines for an emulator used in
evaluation. The source code and all the data sets described be-
low are publicly accessible at https://github.com/microsoft/

Forerunner.

We leverage Ethereum’s openness to run Forerunner as
an Ethereum node to process live traffic. It means not only
that the real and complete traffic is used to measure how
Forerunner would perform on the current public Ethereum
workload, but also all the timings are real so that APs must be
generated in time to achieve any speedups. Our evaluation of
Forerunner focuses on the following aspects: (1) correctness
validation, (2) the speedup and constraint-set satisfaction
rate achieved on real Ethereum traffic, (3) how much each
individual technology contributes to the overall result, and
(4) the stability of the result over multiple time periods.

5.1 Testbed and Datasets

Testbed. Our testbed consists of Azure Dedicated Host [97]
DSv3-Type1 physical servers, with 2.3 GHz Intel® Xeon®
E5-2673 v4 (Broadwell) (64 vCPUs, 256 GB memory), run-
ning Ubuntu 16.04.6 LTS. Each server hosts only one Azure
Standard D64s v3 VM to avoid performance interference. To
run an evaluation task, we use four identical VMs with iden-
tical configurations. Every evaluation result we report is the
average of the four independent results, with low variance:
all the coefficients of variation are below 0.06.

Datasets. We run Forerunner as a normal Ethereum
node observing and processing real-time transactions on
Ethereum. The main evaluation was conducted in a 10-day
period of March 12ś22 (2021), as shown in the 𝐿1 row of
Table 1.

To make our results reproducible and to evaluate the lat-
est version of Forerunner in periods of historical traffic for
comparison, we develop a recorder/emulator that can record
and replay the live traffic of Ethereum. The recorder is a

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 4 8 12 16 20 24 28 32 36 40 44 48
Heard Delay (In seconds)

Figure 11. Reverse CDF of heard delay (𝑦 percentage of
heard transactions whose delay exceed 𝑥 seconds).

dedicated and live Geth node modified to capture all the
pending transactions and the blocks it receives from the
Ethereum network in a given period with precise timings.
The emulator is a Geth node with Forerunner integrated,
which is modified to not connected to the public network.
Instead, it takes a period of recorded traffic and a copy of
the local blockchain database, resets the state to where the
traffic starts, and replays the traffic faithfully, making sure
the relative arrival timings of the transactions and blocks
are accurately respected, to reproduce the results of a live
Forerunner node in this traffic.

We recorded the real traffic in five time periods, shown
as 𝑅1 ś 𝑅5. The period 𝑅1 is the same as 𝐿1 for validation of
the recorder/emulator. 𝑅1 has a different heard rate than 𝐿1
because our traffic recorder is in an independent Ethereum
node, which had different p2p connections with the rest of
the Ethereum network. The other four periods represent
our unbiased random sampling of traffic across 5 months,
offering extra datasets for evaluating Forerunner against the
natural evolution of Ethereum’s traffic characteristics.

Opportunity for speculative execution. Our hypothesis
that leads to speculative execution is that a substantial num-
ber of transactions can be heard during the dissemination
phase in the DiCE paradigm. This is confirmed by column
%Heard txs of Table 1, which shows that the Forerunner
nodes indeed heard 92.24% ∼ 97.59% of the transactions
(91.45% ∼ 98.15% if weighted by execution time) before they
were mined into blocks. Figure 11 shows the reverse CDF
of the delay between when a pending transaction is heard
and when it needs to be executed, which is the time window
for speculative pre-execution. It shows that, for more than
90% of the heard transactions, the time window exceeds 4
seconds.

5.2 Correctness Validation

Forerunner has been designed rigorously and implemented
carefully to ensure correctness of speculative execution, in-
cluding taking into account the peculiarities of Ethereum,
such as the implicit gas-limit checking.

Forerunner’s correctness has been validated extensively
as a by-product of our evaluation. This is because Ethereum
maintains its state as a Merkle tree. Two states are identical
if and only if the values of their Merkle roots are equal. Every
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Table 2. Effective speedup

Speedup % satisfied % (weighted*)

Baseline 1x N/A N/A

Forerunner 8.39x 99.16% 98.41%

Perfect matching 2.11x 68.81% 51.40%

Perfect matching

+ multi-future prediction
5.13x 87.59% 84.64%
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Figure 12. Speedup distribution across all heard transactions
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Figure 13. The correlation between gas used and average
speedup achieved over effectively predicted transactions
(bubble size proportional to transaction count)

block carries a value of the state’s Merkle root after all the
transactions in the block are executed. As shown in Table 1,
Forerunner has managed to process a total number of 121,210
blocks carrying 22,557,724 transactions, always resulting in
a matching value of the Merkle root with others in every
block, despite the use of speculative execution.

5.3 Speedup with Breakdowns

To measure the effectiveness of speculative execution, we re-
port the effective speedup as the average speedup observed on
all transactions where speculative execution is applied. Table
2 shows the results on the 𝐿1 live traffic. Forerunner achieves
a 8.39× speedup compared to the official Go-Ethereum (Geth)
1.9.9, which is our baseline. The percentage of the transac-
tions satisfying AP’s constraint-sets (hench accelerated by
APs) is 99.16%. Because transactions’ execution times vary
substantially, ranging from sub-milliseconds to tens of mil-
liseconds, with an average of 0.56 milliseconds baseline exe-
cution time, we also report a weighted percentage of 98.41%,
calculated with each transaction weighted by its baseline
time. This means that 98.41% of time that spent by Ethereum
for processing transactions can be accelerated by APs.

To better understand the 8.39× speedup, we further show
the distribution of speedup in Figure 12: most are showing a
speedup between 2 and 20; only 0.88% of the transactions are
not accelerated, with 0.53% accelerated by more than 50×.
We even observe some over 1000×. As shown in Figure 13,

Table 3. Breakdown by prediction outcome

% txs % (weighted*) Speedup

satisfied
perfect 87.19% 83.84% 11.33×

imperfect 11.96% 14.58% 4.55×

unsatisfied missed 0.85% 1.59% 1.21×
∗ The percentage weighted by transaction’s baseline execution time.

Forerunner generally achieve higher speedups on more com-
plex transactions as measured by the amount of gas used. It
suggests that, if the future workload of Ethereum consists of
a larger portion of complex transactions, we may expect a
better overall speedup from Forerunner.

Table 2 further provides two reference points to under-
stand the value of Forerunner’s innovative approach. We es-
timate the effectiveness of using a traditional speculative ex-
ecution approach that demands perfect matching with specu-
lation: the resulting speedup is only 2.11×, and the weighted
percentage of perfectly predicted transactions is 51.40%. Even
with the addition of multiple futures, we observe a speedup
of 5.13× with the weighted percentage reaching 84.64%. This
result shows that the multi-future prediction is beneficial for
speculative execution in Ethereum, but the constraint-based
approach is significantly more effective. This more sophisti-
cated approach is crucial for breaking through the speedup
limit imposed by hard-to-predict transactions. We believe
that such a superior prediction effectiveness may enable even
higher speedups with further engineering efforts.

Breakdown by prediction outcomes. Table 3 shows the
breakdown for the "Forerunner" row in Table 2 by three pre-
diction outcomes: perfect prediction, imperfect prediction,
and missed prediction. Perfect prediction means that a trans-
action’s context is identical to one of the speculated contexts.
Imperfect prediction means that a transaction’s context sat-
isfies a constraint-set of an AP, but is not identical to any
speculated context13. Missed prediction refers to the remain-
ing situation. The average speedup is 11.33× for a perfect
prediction and 4.55× for an imperfect prediction. Even for
missed predictions, a majority of transactions still get the
benefit from prefetching, so the average speedup is 1.21×.

End-to-end speedup. The effective speedup excludes un-
heard transactions and the end-to-end speedup, which
includes unheard transactions, drops to 6.06× with the
weighted percentage at 94.19% for dataset 𝐿1. To understand
why, we observe the speedup on unheard transactions at
0.81 (i.e., a modest slowdown), due to the overhead of Fore-
runner’s current implementation.

5.4 Emulation using recorded datasets

We conduct the same experiments using the emulator on
all recorded datasets, shown in Figure 14. The emulation
result on 𝑅1 is sufficiently close to the real experimental

13 For example, if an actual execution has v1=3990555 and v5=3990000, then

the AP in Figure 9 is considered an imperfect prediction, because m1 needs

to take the else transition, but the guard at n5 can still be satisfied.
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Figure 14. Evaluations using 𝐿1 and recorded datasets
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Figure 15. Code reduction during AP synthesis.

result on 𝐿1 to validate our emulator. We observe that the
percentage and weighted percentage of heard transactions
satisfying constraint-sets are above 95% across the board.
The end-to-end speedups vary from 4.56× to 8.38×.

5.5 AP Synthesis and Execution

Figure 15 shows detailed measurements on how the AP syn-
thesis process in Figure 6 converts a recorded EVM trace (the
first column) to S-EVM code (the second column) and then
optimizes it into a highly compact AP program (the third
column). The results shown are the average of all the APs syn-
thesized in 𝐿1 and are normalized by setting the first column
as 100%. In this subsection, the symbol “%ž means “percent-
age pointž. This figure shows the effects of each individual
optimization or conversion. For example, the stack-related
EVM instructions eliminated by the stack-to-register conver-
sion account for 59.37% of the original EMV trace. The num-
ber of S-EVM instructions eliminated by constant folding
equals 18.85% of the original EVM trace. Complex instruc-
tion decomposition adds 8.97% extra S-EVM instructions.
The net result is that the synthesized AP path, including all
the constraint checking code and the fast path program, is
only 8.95% of the size of the original EVM trace. This con-
firms that the CD-Equiv constraints indeed offer significant
specialization and acceleration opportunities. Each AP path’s
average S-EVM instruction count is 351.

Among the transactions, 82.2% have one AP path syn-
thesized, 13.5% have two distinct AP paths synthesized and
merged, and 2.4% have three. The rest 1.9%, which have more
than three, on average, have 14 paths. For AP synthesis, 63.4%

of the transactions have been pre-executed in one distinct
future context, 4.0% in two distinct contexts, 1.0% have been
in three. The rest 31.4%, in more than three contexts, on av-
erage, have been pre-executed in 47 distinct future contexts.
In addition to code size reduction, an average number of 311
shortcuts (nodes and edges) are added to each AP path via
memoization. They enable 80.92% of the S-EVM instructions
to be skipped in the APs executed on the critical path.

5.6 Overhead Off the Critical Path

While the primary goal of this work is to understand the
performance potential of constraint-based speculative exe-
cution on the critical path, we also measure the performance
off the critical path. For the speculator, which is the major
component off the critical path, the end-to-end time to pre-
execute a transaction in a context and synthesize an AP takes
on average 12.19× the time to execute the transaction, with-
out being optimized. We further report the (unoptimized)
resource consumption of the current implementation of Fore-
runner, covering the cost of the multi-future predictor, the
speculator, the prefetcher, and the cache. Running on the
VMs in our testbed, the average memory utilization of Fore-
runner is 67.05 GB, the average utilization of all 64 vCPUs is
23.84%. In comparison, for the baseline (i.e., the official geth),
the former is 19.15 GB, and the latter is 5.51%. In other words,
with Forerunner, the CPU utilization is 3.33× higher than
the baseline, and the memory consumption 2.50× higher.

6 Related work

Speculative execution. Speculative execution has a wide
range of successful applications across all the layers of com-
puter systems [10, 37, 45, 52, 63, 70, 72, 75, 90, 112, 113, 115].
Inmost of these approaches, if a perfect matching on inputs is
not found, a full or partial [91] re-execution is triggered.The
rest of them use execute-verify models [3, 39], which trig-
ger a full re-execution when replicas disagree on the spec-
ulative results. Forerunner introduces a new paradigm by
generalizing perfect matching to constraint satisfaction, and
pre-computed result commitment to fast-path execution.

Program specialization & memoization. Program spe-
cialization [17, 30, 66, 68, 76, 80, 92, 94] is a way to speed up
a program when some inputs are known in advance. Fore-
runner differs from the existing approaches by further re-
stricting the execution of the specialized code to specific
control flow and data dependencies via constraints, so that
more optimizations can be applied. The tradeoff is that the
specialized program supports only a subset of all its pos-
sible inputs; i.e., those satisfy the constraints. Forerunner
shares some core ideas with tracing just-in-time compila-
tion [6, 8, 9, 12, 15, 25, 32, 33, 35, 50, 65, 86], i.e., trace based op-
timization with special guards inserted to detect execution di-
vergence. Forerunner’s data guards enable optimizations that
make sure the AP can be synthesized in a register-only IR,
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which simplifies the implementation of memoization. Memo-
ization [1, 2, 18, 23, 29, 36, 46, 57, 59, 62, 78, 87, 88, 93, 96] is a
widely applicable optimization that saves execution time by
returning cached results of an expensive function (or other
unit of code execution) if it is called with a repeated input.
Forerunner’s shortcuts can cross the artificial boundaries
created by high-level program structures.

ShortCut [26] is a highly related work, which shares a com-
mon theme of accelerating “similarž executions via special-
ization. ShortCut aims to accelerate “mostly-deterministic
code regionsž for those expected to be executed many times.
It is demonstrated on server and desktop applications. The
key insight is that these different executions are “similarž
because a large subset of the inputs remains unchanged.
ShortCut proposes a novel partial memoization, which gener-
ates executable slices for the subset of likely-variant inputs
identified offline. The specialization employed, which toler-
ates more divergences than allowed by CD-Equiv, is to make
the slicing manageable, without applying aggressive opti-
mizations to shorten the code as Forerunner does. The slicing
happens offline without the stringent time constraints under
which Forerunner has to operate. In contrast, Forerunner
aims to use speculative execution to accelerate blockchain
transactions, each of which is expected to be executed in the
near future. Unlike ShortCut, our notion of “similarityž is
about CD-Equiv. It increases the coverage of pre-executions,
because CD-Equiv does not (necessarily) require any inputs
to be identical. By strictly adhering to CD-Equiv, Forerunner
can use highly efficient program specialization to generate
an AP (constraints + fast-path) program, which is already
faster than the original transaction without (necessarily)
memoizing any concrete input value. Furthermore, the role
and design of memoization in Forerunner are different from
those in ShortCut. In Forerunner, memoization is not the
top-level goal, but a further optimization for the already op-
timized AP code. The design does not use slices, but jumps
based on individual variable values.

Blockchain performance. Existing techniques for im-
proving blockchain’s throughput can be broadly catego-
rized into two classes. This first class aims to enable bigger
blocks by developing technologies such as parallel transac-
tion execution [24, 116, 117], JIT [108], and hardware [54],
to process more transactions within the same limited time
window of each block. Forerunner achieves the same goal
with a different and complementary approach, i.e., by allow-
ing transactions to be speculatively executed in advance to
speed up execution on the critical path. The other class of
techniques aims to increase the block generation frequency
by (i) employing DAG-based chain structures [48, 49, 83ś
85], by (ii) utilizing heterogeneity [5, 28] to allow certain

blocks to be generated faster, proposing alternative con-
sensus protocols [11, 13, 34, 41, 43, 60, 64, 73, 89] to re-
duce consensus time between two blocks, by (iii) devel-
oping sharding solutions [44, 47, 55, 71, 95, 107, 118, 119]
or other parallel-chain techniques [58, 114] to introduce
a collection of partially independent sub-chains each of
which can generate blocks in parallel, or by (iv) layer-2 so-
lutions [20, 27, 38, 42, 51, 53, 61, 74, 82, 102, 105], to offload
certain workloads to external systems.

7 Conclusion

Forerunner’s constraint-based approach makes speculative
execution profitable in the DiCE paradigm. Every constraint-
set generated in a pre-executed transaction defines a class
of possible executions of the transaction that are equivalent
regarding their control flows and data dependencies. This
makes an actual execution highly likely (e.g., about 98.41%
likelihood in our main dataset) to benefit from pre-execution.
On the other hand, the constraint set provides enough spe-
cialization power so that the instruction sequence of a trans-
action can be aggressively optimized to reduce the code size
by one order of magnitude. Memoization complements the
power of constraint-sets to further reduce the amount of
actually-executed code. With these techniques, Forerunner
achieves an effective speedup of 8.39× and an end-to-end
speedup of 6.06×. This capability opens up realistic oppor-
tunities (e.g, expanding the block size) toward a significant
throughput increase in Ethereum’s foundational layer.
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A APs synthesized in FC2, FC3.

The AP synthesized in FC2 is shown in Figure 16. The AP
synthesized in FC3 is shown in Figure 17.

v2 = MOD(v1, 300)

v3 = SUB(v1, v2)

v4 = EQ(v3, roundID)

v5 = SLOAD(&activeRoundID)

v6 = LT(v5, roundID)

v7 = SLOAD(&prices[roundID])

v8 = SLOAD(&subm…Counts[roundID])

v9 = MUL(v7, v8)

v10 = ADD(v9, price)

v11 = ADD(v8, 1)

v12 = DIV(v10, v11)
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Figure 16. Accelerated program of Tx𝑒 synthesized in FC2.
All the variables whose names do not start with v, such as
roundID, &activeRoundID, are constants. The correspond-
ing line numbers in EVM trace and the source code are an-
notated in the left two columns.
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Figure 17. Accelerated program of Tx𝑒 synthesized in FC3.
All the variables whose names do not start with v, such as
roundID, &activeRoundID, are constants. The correspond-
ing line numbers in EVM trace and the source code are an-
notated in the left two columns.
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